Neither ‘Good’ in Terms of ‘Better’
nor ‘Better’ in Terms of ‘Good’

Johan E. Gustafsson*

In this paper, I argue against defining either of ‘good’ and ‘better’ in terms of the other. According to definitions of ‘good’ in terms of ‘better’, something is good if and only if it is better than some indifference point. Against this approach, I argue that the indifference point cannot be defined in terms of ‘better’ without ruling out some reasonable axiologies. Against defining ‘better’ in terms of ‘good’, I argue that this approach either cannot allow for the incorruptibility of intrinsic goodness or it breaks down in cases where both of the relata of ‘better’ are bad.

According to a long-standing tradition, one of ‘good’ and ‘better’ can be defined in terms of the other.\(^1\) An early attempt to define ‘good’ in terms of ‘better’ is due to Albert P. Brogan, who proposes that

\[
1.\quad p \text{ is intrinsically good } \equiv_{df} p \text{ is intrinsically better than the negation of } p.\]

Yet Roderick M. Chisholm and Ernest Sosa have found a convincing counter-example to (1). Brogan’s definition rules out a fairly reasonable axiology. Chisholm and Sosa claim that, assuming hedonism, \textit{there being no unhappy egrets} is not intrinsically good. This state of affairs involves neither pleasure nor displeasure. But \textit{there being no unhappy egrets} is intrinsically better than its negation, because the negation involves displeasure and no pleasure.\(^3\)

Instead of (1), Chisholm and Sosa defend that

\[
2.\quad p \text{ is intrinsically good } \equiv_{df} \text{ there is a } q \text{ such that } q \text{ is intrinsically indifferent and } p \text{ is intrinsically better than } q,
\]

where ‘intrinsically indifferent’ is defined as

\(^*\) I would be grateful for any thoughts or comments on this paper, which can be sent to me at johan.eric.gustafsson@gmail.com.

\(^2\) Brogan (1919, p. 98). Following most authors in this debate, I shall focus on intrinsic value. Most of my arguments, however, should be equally applicable to final value.

\(^3\) Chisholm and Sosa (1966, p. 245).
(3) \(p \) is intrinsically indifferent \(\equiv \) \(p \) is not intrinsically better than the negation of \(p \) and the negation of \(p \) is not intrinsically better than \(p \).

[p. 467] Chisholm and Sosa’s approach, however, seems susceptible to an objection of the same type as the one they levelled against (1). That is, their approach seems to rule out some fairly reasonable axiologies. According to the intuition of neutrality in population ethics, there is a range of well-being levels such that adding an extra person with a well-being level in this range would not make the world either better or worse, \textit{ceteris paribus}. And this neutral range includes more than one well-being level.

For example, let 1 and 2 be two well-being levels within the neutral range. Then someone who accepts the intuition of neutrality could claim that the state of affairs \(a_1 \), \textit{Adam’s existing with well-being level 1}, is intrinsically neither better nor worse than its negation, and the same for the state of affairs \(a_2 \), \textit{Adam’s existing with well-being level 2}.

Still, someone who accepts these claims could in addition claim that \(a_2 \) is intrinsically better than \(a_1 \). Then (3) yields that both \(a_1 \) and \(a_2 \) are intrinsically indifferent, since they are intrinsically neither better nor worse than their negations. But \(a_2 \) is intrinsically good according to (2), since \(a_2 \) is intrinsically better than something intrinsically indifferent, that is, \(a_1 \). Hence we have the implausible result that \(a_2 \) is both intrinsically indifferent and intrinsically good.

This problem is perhaps avoided by a variation of Chisholm and Sosa’s approach, due to Philip L. Quinn, that takes ‘at least as good as’ as the primitive locution rather than ‘better’. Quinn’s motivation for this change is to allow for incomparability, which is ruled out by Chisholm and Sosa’s

6 Note, however, that the negations of \(a_1 \) and of \(a_2 \) are not equivalent to the state of affairs \textit{Adam’s not existing}. But, since \(a_1 \) and \(a_2 \) entail that Adam exists and their negations do not entail that someone exists, I think that the intuition of neutrality, on at least one reasonable interpretation, yields that \(a_1 \) and \(a_2 \) are intrinsically neither better nor worse than their negations.

7 One might wonder how it is that \(a_2 \) is intrinsically better than \(a_1 \) if they are both in the neutral range. For example, Broome (2005, pp. 405–409) objects that if one improves on something neutral, the result should be good. See, however, Rabinowicz (2009, pp. 398–400) for a reply.

8 One might object that one can avoid this objection if one distinguishes between intrinsic and contributory value. It might be held that on some reasonable versions of the intuition of neutrality, \(a_1 \) and \(a_2 \) are not better in terms of contributory value than their negations but they are still intrinsically better. Nevertheless, I think there are some fairly reasonable versions of the intuition of neutrality, where \(a_1 \) and \(a_2 \) are neither intrinsically better than their negations nor better in terms of contributory value. I see no reason why someone who accepts the intuition of neutrality cannot claim that \(a_1 \) and \(a_2 \) are, for example, intrinsically incomparable to their negations.
approach. Since their aim is to define all other monadic and dyadic value relations in terms of ‘better’, Chisholm and Sosa define that p is intrinsically equally good as q, as that p is intrinsically neither better nor worse than q, which does not allow for incomparability. Quinn claims instead that

\begin{equation}
(4) \quad p \text{ is intrinsically good } \equiv \text{ there is a } q \text{ such that } q \text{ is intrinsically indifferent and } p \text{ is intrinsically at least as good as } q \text{ and } q \text{ is not intrinsically at least as good as } p,
\end{equation}

where ‘intrinsically indifferent’ is defined as

\begin{equation}
(5) \quad p \text{ is intrinsically indifferent } \equiv \text{ p is intrinsically at least as good as the negation of } p \text{ and the negation of } p \text{ is intrinsically at least as good as } p.
\end{equation}

A welcome feature of (4) and (5) is that they do not rule out the combination of comparisons based on the intuition of neutrality above. This is because a_1 and a_2 might be intrinsically incomparable with their negations and thus not intrinsically indifferent according to (5). Yet, as with (3), it is far from obvious that all states of affairs classified as intrinsically indifferent by (5) are intrinsically equally good as one another. If that p is intrinsically better than its negation, pace Brogan, does not entail that p is intrinsically good, then why should that p is intrinsically equally good as its negation entail that p is intrinsically indifferent? For an example where two states of affairs are intrinsically indifferent according to (5) but not intrinsically equally good, consider an axiology where there is no interpersonal comparability. Someone who accepts such an axiology could claim that there is some well-being level L_S for Smith such that the state of affairs s, Smith’s existing with well-being level L_S, is intrinsically equally good as its negation, and also claim that there is some well-being level L_J for Jones such that the state of affairs j, Jones’s existing with well-being level L_J, is intrinsically equally good as its negation. Moreover, someone who makes these claims and rejects interpersonal comparability could also claim that s is intrinsically incomparable with j. But then we get the implausible result that s and j are intrinsically indifferent according to (5); yet they are not intrinsically equally good.

9 Quinn (1977, pp. 74–75).
12 This fits with, for example, Rabinowicz’s (2009, p. 392) interpretation of the intuition of neutrality. He claims that, other things being equal, the world with added people at well-being levels within the neutral range is neither better nor worse than the world not containing these people and, moreover, the worlds are not equally good.
Nonetheless, one might wonder why two indifferent things cannot be incomparable with each other—especially if incomparability is possible in general. But, to see this, note first that if two things are incomparable with each other and not merely equally good, there should plausibly be some small improvement of one of them that does not make the improved thing better than the other.\(^1^3\) Suppose that \(s\) and \(j\) are intrinsically incomparable and there is an improvement of, for example, \(s\) that is intrinsically better than \(s\) but not intrinsically better than \(j\). Since this improvement \(s^+\) is intrinsically better than something intrinsically indifferent according to (5), it follows from (4) that \(s^+\) is intrinsically good. But then we have something intrinsically good, \(s^+\), that is not intrinsically better than something intrinsically indifferent, \(j\), which seems like a reductio.\(^1^4\) To avoid this problem in the above case, I think that, since \(s\) and \(j\) are incomparable, one should claim that at least one of them lacks a monadic evaluative status or that they are not indifferent. But (5) does not allow for that.\(^1^5\)

\(^{13}\) Raz (1986, pp. 325–326), for example, calls this ‘the mark of incommensurability.’ One might object that the condition is too strong. Suppose, for example, that every improvement of either of one of two things makes the improved thing better than the other, but some depreciation of one of them does not make the depreciated thing worse than the other. Then it seems that the two are not equally good. Hence the condition should be replaced by the weaker claim that if two things are incomparable and not merely equally good, there should plausibly be some small improvement or depreciation of one of them that does not make the modified thing better or worse than the other. In the case of deprecations rather than improvements, we need to introduce Quinn’s (1977, p. 77) definition of ‘bad,’ which is analogous to his definitions of ‘good’ and ‘indifferent’:

\[(\text{I}) \quad p \text{ is intrinsically bad } =_{df} \text{ there is a } q \text{ such that } q \text{ is intrinsically indifferent and } q \text{ is intrinsically at least as good as } p \text{ and } p \text{ is not intrinsically at least as good as } q.\]

Suppose then that \(s\) and \(j\) are intrinsically incomparable and there is a depreciation of, for example, \(s\) that is intrinsically worse than \(s\) but not intrinsically worse than \(j\). Since this depreciation \(s^-\) is intrinsically worse than something intrinsically indifferent according to (5), it follows from (I) that \(s^-\) is intrinsically bad. But then we have something intrinsically bad, \(s^-\), that is not intrinsically worse than something intrinsically indifferent, \(j\), which seems implausible.

\(^{14}\) One might object that there are cases where it seems plausible that something good is not better than something indifferent. Suppose, for example, that \(A\) is morally indifferent, \(A^+\) is morally good, and \(B\) is aesthetically indifferent. Furthermore, suppose that \(A\) and \(A^+\) are the sort of things that cannot have aesthetic value and \(B\) is the sort of thing that cannot have moral value. In this case, it seems quite plausible that \(A^+\) is not better than \(B\). But this case differs from the one with \(s\) and \(j\) in that \(A\) and \(B\) are indifferent with respect to different types of values. Note that \(s\) and \(j\) are classified by (5) as intrinsically indifferent in the same sense; they are both classified as indifferent with respect to overall intrinsic value. And \(s^+\) is classified as good by (4) with respect to the same type of value as \(s\) and \(j\) were classified as indifferent. So what is strange is that something classified as good with respect to some kind of value \(V\) is not better with respect to \(V\) than something classified as indifferent with respect to \(V\).

\(^{15}\) One might object that the following proposal avoids this problem:

\[(\text{II}) \quad p \text{ is intrinsically good } =_{df} p \text{ is intrinsically better than all intrinsically indifferent }\]
It seems then that there is no acceptable definition of an indifference point in terms of ‘better’. Nevertheless, a definition of ‘good’ in terms of ‘better’ might perhaps sidestep this issue by defining ‘good’ directly in terms of what is better than some particular state of affairs that is taken as the indifference point. Sven Danielsson adopts this approach. He suggests the tautology as the indifferent, or neutral, reference point and defines ‘good’ and ‘indifferent’ as follows:

(6) \(p \) is intrinsically good = \(df\) \(p \) is intrinsically better than the tautology.
(7) \(p \) is intrinsically indifferent = \(df\) \(p \) is intrinsically equally good as the tautology.\(^{17}\)

Lennart Åqvist objects, however, that there seems to be no reason why all axiologies should satisfy (6) and (7).\(^{18}\) An axiology where the tautology rather than being indifferent, for example, lacks a monadic evaluative status strikes me as fairly reasonable and not something that should be ruled out by conceptual fiat. In addition, Åqvist objects that

neither the definitions in question, nor the stipulation, should be adopted in a logic of intrinsic value, although they may very well be so in particular ethical theories employing that notion.\(^{19}\)

[p. 469] The idea here seems to be that formal definitions of ‘good’ or ‘indifferent’ should be neutral about which states of affairs are good and which are indifferent. Danielsson’s definitions, which yield that the tautology is intrinsically indifferent, violate this desideratum. Furthermore, we run into the same problem if we replace the tautology in (6) and (7) with some other state of affairs.

\(^{q}\) and at least one such \(q \) exists,

where ‘intrinsically indifferent’ is defined as in (5). If we accept (II) instead of (4), my argument above no longer works. If \(s^+ \) is not better than the intrinsically indifferent \(j \), then—given (II)—\(s^+ \) is not intrinsically good. Yet I do not think that this move is successful. We just get another \textit{reductio} instead, namely, that something intrinsically better than something intrinsically indifferent is not intrinsically good.

\(^{18}\) Another strange feature of (2), (4), and (II) is that they rule out the possibility of there being something intrinsically good while there is nothing intrinsically indifferent. One might try to sidestep this issue by revising them along the lines of the following:

(III) \(p \) is intrinsically good = \(df\) for all \(q \) such that \(q \) is intrinsically indifferent, \(p \) is intrinsically better than \(q \).

On this proposal, the definiens might still hold even if there is nothing indifferent. But, if there were nothing indifferent, the definiens of (III) would just be a vacuous truth that would hold for all \(p \). Hence (III) instead rules out versions of nihilism on which nothing is intrinsically good, bad, or indifferent.

\(^{17}\) Danielsson (1968, p. 37).
\(^{18}\) Åqvist (1968, p. 268).
\(^{19}\) Åqvist (1968, pp. 268–269).
So, if we wish to avoid ruling out reasonable axiologies, we seem unable to define the indifference point in terms of ‘better’ nor take a particular state of affairs as the indifference point. But then the basic idea behind definitions of ‘good’ in terms of ‘better’ seems broken, that is, the idea that we can define that something is good, as that it is better than some indifference point that is in turn defined in terms of betterness.

Even though it seems that one cannot adequately define ‘good’ in terms of ‘better’, ‘better’ might perhaps still be definable in terms of ‘good’. Note, however, that our object is to determine whether ‘better’ is definable in terms of ‘good’ in its plain, non-comparative sense, or vice versa. This rules out some straightforward proposals that otherwise fulfil our desiderata. For example, John Broome claims that ‘better than’ is synonymous with ‘more good than’. Which suggests the following proposal:

(8) \(p \) is better than \(q =_{df} p \) is more good than \(q \).

Apart from its slightly non-standard English, the major drawback of (8) for our present purposes is that ‘good’ is not used here in its monadic, plain form, because it is modified by ‘more’, which in this instance serves as a marker of comparative grade. Thus ‘good’ is not used in (8) to classify things as good. Hence (8) is irrelevant for whether ‘better’ in its dyadic, comparative form is definable in terms of ‘good’ in its monadic, plain form.

Nevertheless, we might be able to do better than ‘more good than’. Another definition of ‘better’ in terms of ‘good’ is due to Johan van Benthem. Actually, he proposes a general theory of comparatives in terms of context-sensitive, monadic relations. He proposes that

(9) \(p \) is \(F \)er than \(q =_{df} \) in the context \(\{p, q\} \), \(p \) is \(F \) while \(q \) is not.

Applied to intrinsic betterness, his account yields that

(10) \(p \) is intrinsically better than \(q =_{df} \) in the context \(\{p, q\} \), \(p \) is intrinsically good while \(q \) is not.

My objection to this account is that it does not work with G. E. Moore’s idea of the incorruptibility of intrinsic goodness. That is, it does not work with the idea that if the value of a thing depends exclusively on the intrinsic nature of the thing, it is impossible for the thing to have

21 Note that I am not arguing that Broome’s definition is false. My point is merely that (8) is not a definition of ‘better’ in terms of the monadic, plain form of ‘good’.

22 The same holds for a Leibnizian analysis of ‘\(p \) is better than \(q \)’ in terms of ‘\(p \) qua good is superior insofar as \(q \) qua good is inferior’. Cf. Mates (1986, p. 179).

that value in some circumstances but not in others.\(^4\) This rules out that intrinsic goodness varies with the context in the manner [p. 470] needed for (10) to make sense. If both \(p\) and \(q\) are intrinsically good in this way, both of them will be intrinsically good in the context \(\{p, q\}\). Hence one of them cannot be intrinsically better than the other according to (10), which is inadequate.

A closely related objection can be made without relying on Moore’s conception of intrinsic value. Let \(A\) and \(B\) be two pleasurable experiences with the same duration such that \(A\) is even more pleasant than \(B\). It seems then that a hedonist would claim that \(A\) is better than \(B\). Yet a hedonist would not deny that \(B\) is good even in a context where we only consider \(A\) and \(B\), which is ruled out by van Benthen’s proposal.

Nonetheless, we might perhaps define betterness in terms of the goodness of something obtaining instead of something else, without making this goodness conditional on certain contexts. We could claim that

\[(11) \quad p \text{ is intrinsically better than } q \quad \text{if } q = df \text{ it is intrinsically good that } p \text{ rather than } q \text{ obtains.}\]

Yet there is a problem with this approach.\(^5\) If ‘good’ in (11) is used in its monadic, plain form, then the whole of ‘that \(p\) rather than \(q\) obtains’ has to be within the scope of ‘intrinsically good’. But, whatever the exact meaning of ‘that \(p\) rather than \(q\) obtains’ is, it implies that one of \(p\) and \(q\) obtains, and, if \(p\) and \(q\) are intrinsically bad enough, this should make the whole of ‘that \(p\) rather than \(q\) obtains’ something not intrinsically good, even if \(p\) is intrinsically slightly better than \(q\).

One might try to avoid this implication by making the obtaining of \(p\) conditional on that one of \(p\) and \(q\) obtains. Hence one might claim that

\[p \text{ is intrinsically better than } q \quad \text{if } p \text{ implies } q \quad \text{and if contradictions cannot be intrinsically good. There are, however, some suggestions in the literature for how to transform compatible options into incompatible ones for comparison. The simplest one, due to Aristotle (Top. III 2, 1181a16–23), is to compare } p \text{ with } q \text{ by comparing } p\text{-and-if-possible-} \neg q \text{ with } q\text{-and-if-possible-} \neg p. \text{ But this proposal is not entirely satisfactory. As before, in cases where one of the options entails the other, the proposal yields that one should compare something with a contradiction.}

Warren S. Quinn (1974, p. 125) discusses a method where one instead compares \(p\) with \(q\) by comparing \(p\text{-and-if-possible-} \neg q\) with \(q\text{-and-if-possible-} \neg p\). Yet this proposal yields a counter-intuitive result in an example due to Chisholm and Sosa (1966, p. 245). Let \(a\) be the state of affairs \(\text{there being stones}\), and let \(b\) be the state of affairs \(\text{there being no happy egrets}\). Furthermore, let us assume hedonism. Since neither \(a\) nor \(b\) entails that there is some pleasure or displeasure, \(a\) should not be intrinsically better than \(b\). Nevertheless, \(a \& \neg b\) does not entail that there is displeasure but it entails that there are happy egrets and hence that there is pleasure, while \(b \& \neg a\) does not entail that there is some pleasure or displeasure. Hence it seems that, given hedonism, \(a \& \neg b\) is intrinsically better than \(b \& \neg a\). Thus it seems that Quinn’s proposal yields misleading comparisons.

\(^{5}\) Another drawback of (11) and of (12) is that they yield that \(p\) cannot be intrinsically better than \(q\) if \(p\) implies \(q\)—at least if contradictions cannot be intrinsically good. There are, however, some suggestions in the literature for how to transform compatible options into incompatible ones for comparison. The simplest one, due to Aristotle (Top. III 2, 1181a16–23), is to compare \(p\) with \(q\) by comparing \(p\text{-and-if-possible-} \neg q\) with \(q\text{-and-if-possible-} \neg p\). But this proposal is not entirely satisfactory. As before, in cases where one of the options entails the other, the proposal yields that one should compare something with a contradiction. Warren S. Quinn (1974, p. 125) discusses a method where one instead compares \(p\) with \(q\) by comparing \(p\text{-and-if-possible-} \neg q\) with \(q\text{-and-if-possible-} \neg p\). Yet this proposal yields a counter-intuitive result in an example due to Chisholm and Sosa (1966, p. 245). Let \(a\) be the state of affairs \(\text{there being stones}\), and let \(b\) be the state of affairs \(\text{there being no happy egrets}\). Furthermore, let us assume hedonism. Since neither \(a\) nor \(b\) entails that there is some pleasure or displeasure, \(a\) should not be intrinsically better than \(b\). Nevertheless, \(a \& \neg b\) does not entail that there is displeasure but it entails that there are happy egrets and hence that there is pleasure, while \(b \& \neg a\) does not entail that there is some pleasure or displeasure. Hence it seems that, given hedonism, \(a \& \neg b\) is intrinsically better than \(b \& \neg a\). Thus it seems that Quinn’s proposal yields misleading comparisons.
(12) \(p \) is intrinsically better than \(q =_{df} \) it is intrinsically good that if one and only one of \(p \) and \(q \) were to obtain, then \(p \) would obtain.

The state of affairs classified as intrinsically good in (12) does not imply that one of \(p \) and \(q \) obtains. This proposal hence avoids the above problem that this state of affairs seems bad in case both \(p \) and \(q \) are very bad. But we have just traded one problem for another; even if \(p \) is intrinsically much better than \(q \), it need not be intrinsically good that \(p \) would obtain if one and only one of \(p \) and \(q \) were to obtain. For example, in a world entirely devoid of experiences, it seems, assuming once more hedonism, that no intrinsically good state of affairs obtains. No state of affairs involving pleasure or displeasure obtains. Still, in that experience-free world, it might hold that \(p \) is intrinsically better than \(q \) and if one of \(p \) and \(q \) were to obtain, \(p \) would obtain. If so, (12) yields that in that world entirely devoid of experiences some intrinsically good states of affairs obtain, which seems wrong given hedonism.

But then we have a more general problem for definitions of ‘better’ in terms of ‘good’. Let \(x \) be the state of affairs classified as intrinsically good in the definiens. Then either (i) \(x \) implies that one of the compared options obtains or (ii) \(x \) does not imply that one of them obtains. In case (i), we get the first problem that a \([p. 471]\) state of affairs that implies that one of \(p \) and \(q \) obtains does not seem intrinsically good if \(p \) and \(q \) are very bad, even though \(p \) is slightly better. In case (ii), we get the second problem: Whether \(p \)’s being intrinsically better than \(q \) implies \(x \)’s being intrinsically good, and vice versa, seems to vary with different axiologies. Thus there should plausibly be some reasonable axiology, as in the case with (12) and the experience-free world, where it holds that \(p \) is intrinsically better than \(q \) but where it does not hold that \(x \) is intrinsically good, or vice versa.

Thanks to Gustaf Arrhenius, John Broome, Erik Carlson, William MacAskill, Nicolas Espinoza, Sven Ove Hansson, Mats Ingelström, Jonas Olson, Martin Peterson, Wlodek Rabinowicz, and Michael J. Zimmerman for valuable comments. Financial support from the Franco-Swedish Program in Economics and Philosophy, Fondation Maison des sciences de l’homme, and Riksbankens Jubileumsfond is gratefully acknowledged.

References

'GOOD’ IN TERMS OF ‘BETTER’