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abstract. The expectation of a sum of utilities is a core criterion for evaluating policies
and social welfare under variable population and social risk. Our contribution is to show
that a previously unrecognized combination of weak assumptions yields general versions
of this criterion, both in fixed-population and in variable-population settings. We show
that two dimensions of weak dominance (over risk and individuals) characterize a social
welfare function with two dimensions of additive separability. So social expected utility
emerges merely from social statewise dominance (given other axioms). Moreover, addi-
tive utilitarianism, in the variable-population setting, arises from a new, weak form of
individual stochastic dominance with two attractive properties: It only applies to lives
certain to exist (so it does not compare life against non-existence), and it avoids promi-
nent egalitarian objections to utilitarianism by only applying if certain correlations are
preserved. Our result provides a foundation for evaluating climate change, growth, and
depopulation.

1. Introduction

Policies that change future mortality rates (like climate mitigation) or change
future fertility rates (like public education) not only change the quality of lives
in the future but also who will live in the future. Humanity’s global population
has quadrupled over the past hundred years and is projected to peak then
shrink within the lifetime of children born today — with uncertain conse-
quences.1 Hence, to evaluate economic policies, we need to assess both social
risk and variable population. A standard principle for economic policy evalu-
ation is Expected Total Utilitarianism, whichmaximizes the expected value of

* We would be grateful for any thoughts or comments on this paper, which can be sent to
johan.eric.gustafsson@gmail.com.

1 For two recent overviews of economists’ emerging understanding and open questions
about low fertility, see Kearney et al. 2022 andDoepke et al. 2022. For possiblemacroeconomic
implications of depopulation, see Jones 2022.
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the sum of individuals’ transformed lifetime well-being.2 Despite the promi-
nent use in public economics of both additive utilitarianism and expectation-
taking under risk, these methods continue to be questioned in welfare eco-
nomics, in part because existing axiomatic justificationsmake arguably strong
assumptions (Fleurbaey, 2010; Golosov et al., 2007).

We provide a new axiomatic path to Expected Total Utilitarianism. Our
result builds upon a new combination of weak assumptions that yields
additive separability in the dimensions of states of the worlds and individu-
als.3 Results are obtained both in the fixed-population setting of Harsanyi’s
foundational aggregation theorem for utilitarianism (Harsanyi, 1955), and in a
variable-population setting. By comparing these two theorems, we show that
the variable-population setting allows us to avoid contentious assumptions
that the fixed-population setting requires to characterize Expected Total
Utilitarianism.

We introduce a new, weakened version of individual stochastic dominance.
Using it, our variable-population characterization offers several striking ad-
vantages over prior characterizations of Expected Total Utilitarianism in the
literature:

• Dominance axioms, not expectation-taking. Our approach does not
assume Expected Utility Theory either for society or for individuals.
Instead, we show that two dimensions of weak dominance (one over
risky states and the other over individuals) characterize a social welfare
function with two dimensions of additive separability. So social
expected utility emerges merely from social statewise dominance (in
the context of our other axioms).

2 For simplicity, we use the (strictly speaking) improper label “Expected Total Utilitarian-
ism”throughout the text. What we have in mind is looking at the expected value of a sum of
transformed utilities (where, in the variable case, the transformation implicitly includes set-
ting a critical-level of utilities such that adding an individual to a population is good if and
only if her utility is above that level). In a fixed-population case, and a different framework,
Grant et al. (2010) named this approach Generalized Utilitarianism. In a variable-population
framework, Blackorby et al. (1998) introduced this criterion under the label Expected-Utility
Critical-Level Generalized Utilitarianism. Spears and Zuber (2023) used the label Expected
Critical-Level Generalized Utilitarianism. A more proper label would be Generalized Expec-
tational Total Utilitarianism

3 An active current theoretical literature in welfare economics has been exploring addi-
tive separability over two dimensions, including Fleurbaey 2009, Mongin and Pivato 2015,
McCarthy et al. 2020, Spears and Zuber 2023, and Li et al. 2023. We discuss related prior liter-
ature in more depth in our conclusion section.
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• Additivity from individual stochastic dominance. Moreover,
generalized utilitarianism arises merely from our version of individual
stochastic dominance, which is only assumed to compare lives certain to
exist; this is crucial because it means that our core variable-population
axiom does not compare life against non-existence.

• Individual expected utility without assuming individual
completeness. Finally, without assuming complete individual
preferences, we derive that the social order respects individual-level
expected utility.

The new axiom that we introduce, called Correlated Stochastic Dominance for
Sure Individuals, is at the core of our new results. To explain the axiom, we
present two examples. The first example distinguishes Expected Total Utilitar-
ianism from approaches to population ethics that are not additively separable.
The second example distinguishes Expected Total Utilitarianism from fixed-
population egalitarian criteria.

For the first example, consider Table 1, where columns are individuals,
rows are equiprobable states, and for the purposes of this example, 𝛺 repre-
sents an individual’s non-existence in a state.4

Table 1: First motivating example: The only affected person is sure to exist in
both prospects and is stochastically better-off in 𝑔∗

prospect 𝑓∗ prospect 𝑔∗

state Ann Bob Ann Bob

𝑠1 1 1 1 9
𝑠2 𝛺 7 𝛺 1

Our approach distinguishes between individuals who are sure to exist in any
state and individuals who may or may not exist, depending on which state
is realized. In Table 1’s comparison of 𝑓∗ and 𝑔∗, Ann is not sure to exist in
either prospect. But she is altogether unaffected by the social choice of 𝑓∗ or

4 This example was first introduced in the philosophy literature, as a counterexample
against using the expected value of average utility, by Gustafsson and Spears (2022); their in-
formal paper does not include any characterization results. Gustafsson and Spears emphasize
that their counterexample uses only positive lifetime utilities, so unlike other classic objections
to Average Utilitarianism and to other non-separable approaches to population ethics, their
counter-example does not depend upon a meaningful zero for utility nor upon the plausible
existence of lives not worth living.
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𝑔∗: her utility conditional-on-existence does not differ between her prospects,
nor her probability of existence, nor even the state in which she exists. Bob is
the only person in Table 1 who is sure to exist. Given the equal probability of
the two states, prospect 𝑔∗ stochastically dominates prospect 𝑓∗ for him. Our
new principle says that, in this situation, 𝑔∗ is better than 𝑓∗.

The starting point for our new principle is an intuition of Individual
Stochastic Dominance: A prospect is better if it can be shown, without
comparing existence to non-existence, to be better for somebody sure to
exist and worse for nobody, where “better for” merely means in the sense of
stochastic dominance, which is an incomplete ranking. In this case, that’s
𝑔∗. Notice, however, that looking at the expected value of average utility, or
the expected value of minimal utility, would each imply choosing 𝑓∗ over
𝑔∗ in Table 1. And so would a non-expectation-taking rule that evaluates
outcomes according to the sum of utilities but then uses maximin for social
risk, choosing the prospect with the highest least-socially-valuable state.5
Therefore, the example in Table 1 differentiates each of these alternative
approaches to variable-population social choice under risk from Expected
Total Utilitarianism.

Table 2: Second motivating example: Equal individual prospects can yield un-
equal outcomes

prospect 𝑓∗∗ prospect 𝑔∗∗

state Ann Bob Ann Bob

𝑠1 1 1 1 0
𝑠2 0 0 0 1

Principles for social choice that evaluate each individual’s ex-ante prospect —
like Individual Stochastic Dominance does — are controversial in the norma-
tive literature, because of the implications for ex-post fairness (Myerson 1981;
Broome 1991, p. 185; Parfit n.d., ch. 1; 1995, p. 17). So our main result uses a
weaker axiom than Individual Stochastic Dominance.

To see why, consider Table 2, which is originally due to Myerson (1981).
Continue to assume that the two states are equally probable. So both individu-
als face the same individual prospect in 𝑓∗∗ and 𝑔∗∗. Accordingly, Individual
Stochastic Dominance implies that those two prospects must be indifferent.

5 That is, min𝑠 (∑𝑖 𝑢𝑖𝑠). There is literature in decision theory proposing to maximize the
minimal expected utility using a set of probability, in particular Gilboa and Schmeidler 1989.
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But several authors have argued that society may prefer prospect 𝑓∗∗ because
it does not imply any inequality ex post (Fleurbaey, 2010). Our novel variable-
population individual dominance axiom, however, avoids this implication and
avoids the direct conflict with egalitarianism in Table 2. That is because our
new principle — namely Correlated Stochastic Dominance for Sure Individu-
als — weakens stochastic dominance to only apply if states can be permuted
in the same way for all sure-to-exist individuals. Therefore, this principle is
consistent with egalitarian (or any other) choice in Table 2.

Our paper demonstrates that the axioms that can characterize Expected
Total Utilitarianism in a variable-population setting (which is the realistic
setting for our variable-population world) are meaningfully weaker than the
axioms that can do so in a fixed-population setting. Principally, this is because
the variable-population setting can use Correlated Stochastic Dominance
for Sure Individuals instead of Individual Stochastic Dominance, which
the fixed-population setting requires. Additionally, the fixed-population
setting requires an axiom (called Compensation) that can be dropped in our
variable-population setting. Our paper demonstrates this by first proving a
representation theorem in a fixed-population setting (our Theorem 1) and
then proving a representation theorem in a variable-population setting (our
Theorem 2). In this way, we apply the insight of Blackorby and Donaldson
(1984), who showed that variable population provides an axiomatic path
to utilitarianism that is distinct from Harsanyi’s path using social risk
(Harsanyi, 1955). More broadly, we demonstrate what can be achieved by
combining Blackorby and Donaldson’s approach with Harsanyi’s result. Our
result shows that Harsanyi’s assumptions can be considerably weakened in a
variable-population setting — which is also the setting that is pragmatically
needed for economic policy assessments.

After presenting our main results, we show that they can be reinterpreted
to apply to further economic settings and questions with two dimensions of
value. Macroeconomists, for one example, canonically use time-separable so-
cial objective functions that add a value for each time period, which in turn
is found by adding a period utility for each individual: ∑𝑡 𝛼𝑡 ∑𝑖 𝑢𝑖𝑡 for indi-
viduals 𝑖 and times 𝑡. Although our main result considers risky states and in-
dividuals, our result can also be applied to time periods and individuals. So
our results offer a new axiomatic justification for this practice in the macroe-
conomic literature. For example, we provide a microfoundation for Klenow,
et al.’s (2022) recent growth accounting model that incorporates population
growth while assuming a Total Utilitarian perspective: They conclude that,
even though per-person living standards have improved radically, over the
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past decades population growth has accounted for even more of the vast im-
provements in aggregate well-being. Climate economics, such as Nordhaus’
(2017) DICE and RICE models, also uses a version of this functional form for
optimizing macroeconomic climate policy. We provide a new foundation for
this standard tool in normative macroeconomics.

In another application, we show that our formal result can be reinterpreted
to propose that a prudent individual making risky decisions about a life of
unknown length and per-period utility should maximize the expected sum of
per-period utility over time, ∑𝑠 𝛼𝑠 ∑𝑡 𝑢𝑠𝑡 for risky states 𝑠 and time periods 𝑡.
This application would exclude, for example, risk aversion over the length of
the person’s life.

2. Framework

Letℕ denote the set of positive integers,𝑁 the set of non-empty finite subsets
ofℕ,ℝ the set of real numbers, andℝ++ the set of positive real numbers. For
a set 𝐷 and any 𝑛 ∈ ℕ, 𝐷𝑛 is the 𝑛-fold Cartesian product of 𝐷. Also, for any
two sets𝐷 and 𝐸,𝐷𝐸 denotes the set of mappings from 𝐸 into𝐷.

The set of potential individuals who may or may not exist is 𝐼. We will con-
sider two cases: a fixed-population case where 𝐼 = {1,… , 𝑛} for some finite 𝑛
and individuals always exist; and a variable-population case where 𝐼 = ℕ and
only a finite non-empty subset of individuals exist in any realized outcome. In
the variable-population case, because 𝐼 = ℕ, 𝑁 is the set of all possible real-
ized populations of individuals. That is, in any outcome, a population𝑁 exists:
𝑁 ∈ 𝑁 in the variable-population case and𝑁 = 𝐼 in the fixed-population case.

We consider a welfarist framework where the only information necessary
for social decisions is the utility levels of people alive in a certain state of affairs.
An outcome’s welfare information is given by 𝑢 = (𝑢𝑖)𝑖∈𝑁 ∈ ℝ𝑁, where 𝑁 is
the population, and 𝑢𝑖 ∈ ℝ is, for each existing individual 𝑖, the lifetime utility
experienced by 𝑖.

Although we represent lifetime utilities with real numbers, we do not re-
quire, as a property of the setting, that they be measured on a ratio or even
interval scale. We require only that lifetime utilities be ordered and have the
cardinality of the continuum, so that our use ofℝ can be interpreted as a rep-
resentation of this order; that they have a topology that will allow us to use
an axiom of continuity in lifetime utilities for fixed, sure populations; and that
we canmeaningfully use an axiom that assumes the existence of a critical level
for indifferently adding a life in at least some egalitarian situations.

We denote 𝑈 the set of outcomes; the exact definition will be different
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in the fixed-population and variable-population cases. For each 𝑢, we denote
𝑁(𝑢) the set of individuals alive in 𝑢, and 𝑛(𝑢) the number of individuals alive
in 𝑢. For two any outcomes 𝑢 and 𝑣 such that𝑁(𝑢) ∩𝑁(𝑣) = ∅ (that is, 𝑢 and
𝑣 are distributions of utility for two disjoint populations), we denote 𝑢𝑣 the
outcome where the two populations are merged. Formally, it is the outcome
𝑤 such that𝑁(𝑤) = 𝑁(𝑢) ∪ 𝑁(𝑣), 𝑤𝑖 = 𝑢𝑖 for all 𝑖 ∈ 𝑁(𝑢), and 𝑤𝑗 = 𝑢𝑗 for all
𝑗 ∈ 𝑁(𝑣).

We assume that it is not always known for sure what the final utility vec-
tor will be nor what set of individuals will exist. For simplicity we assume that
there is a fixed, finite set of states of the world 𝑆 = {1,… ,𝑚}, with 𝑚 ≥ 2,
where all states are equally probable so that each state has probability 1𝑚 . A
“supplementary material” appendix discusses the extension to the more gen-
eral case. Note that we are in a frameworkwhere probabilities are given and/or
individuals have the same beliefs (an “objective” probability framework).

A social prospect 𝑓 is a mapping from 𝑆 to 𝑈. For 𝑠 ∈ 𝑆, 𝑓(𝑠) is therefore
the outcome induced by the prospect 𝑓 in state 𝑠. We let 𝐹 = 𝑈𝑆 be the set
of functions from 𝑆 to 𝑈. For an outcome 𝑢 ∈ 𝑈, we abuse notation and also
denote 𝑢 the sure social prospect 𝑓 such that 𝑓(𝑠) = 𝑢 in all 𝑠 ∈ 𝑆.

For any outcome 𝑢 ∈ 𝑈, whenever 𝑖 ∈ 𝑁(𝑢), 𝑢𝑖 ∈ ℝ denotes the utility of
individual 𝑖. For a prospect 𝑓 ∈ 𝐹, whenever 𝑖 ∈ 𝑁(𝑓(𝑠)), 𝑓𝑖(𝑠) denotes the
utility of individual 𝑖 in state of the world 𝑠 ∈ 𝑆. For an individual 𝑖 ∈ 𝐼 and a
social prospect 𝑓 ∈ 𝐹, we let 𝑆𝑖(𝑓) = {𝑠 ∈ 𝑆|𝑖 ∈ 𝑁(𝑓(𝑠))} be the set of states of
the world where individual 𝑖 exists.6

In the fixed-population case, we have 𝑆𝑖(𝑓) = 𝑆 for all individuals and
prospects. But thismay not be case in the variable-population case: In that case
a potential individual may not exist in some (or any) state of the world. In our
variable-population case, we call any individual 𝑖, under any social prospect
𝑓 such that 𝑆𝑖(𝑓) = 𝑆, “necessary” under 𝑓, because if 𝑓 is chosen then 𝑖
certainly exists. Becausewe assume the complete domain𝐹 = 𝑈𝑆, our variable-
populationdomain includes prospectswith bothnecessary andnon-necessary
individuals.7

6 Notice that, like essentially all research in the traditions of Harsanyi (1955) and of Black-
orby et al. (2005) — such as Broome 1991, Fleurbaey 2010, McCarthy et al. 2020, Spears and
Zuber 2023, and Li et al. 2023 — our domain assumes that personal identity is such that it is
meaningful to talk about the same person existing in different risky states of the world.

7 Our axiomCorrelated Stochastic Dominance for Sure Individuals distinguishes between
necessary and non-necessary people, in a comparison of two social prospects. We do not
model time explicitly, but some readers may find that it aids their intuition to interpret neces-
sary individuals as those who are already alive (such as you and us), although this interpreta-
tion is not required by our formal framework.

6



The task of our paper is to characterize a social preorder ≿ on 𝐹. That ≿
is a preorder means that it is a reflexive and transitive binary relation. In par-
ticular, the preorder ≿ is not directly assumed by our axioms to be complete
on 𝐹, although both of our theorems derive completeness on 𝐹 from the com-
bination of our axioms. Throughout the paper we assume completeness only
on sure prospects, as stated in our first axiom:

Completeness for Sure Prospects For all 𝑢, 𝑣 ∈ 𝑈, either 𝑢 ≿ 𝑣, or 𝑣 ≿ 𝑢,
or both.

Completeness for Sure Prospects is not contentious within the literature
for same-population cases. It is more contentious in the philosophical
population-ethics literature. Completeness, in that case, would hold that
populations with different sizes are always comparable. Some authors argue
that variable-population completeness may not hold because we do not
know the critical level for adding an additional life.8 But approaches with
incompleteness are typically subject to time-consistency problems or money
pump arguments (Hammond, 1988; Gustafsson, 2022). Variable-population
incompleteness would also have deeply unattractive practical and normative
implications, such as that climate mitigation policy is not preferable to large
global temperature increases, because different sets of people would exist.9
Ordinary economic analysis and policy-making routinely (if implicitly)
assume that outcomes with different populations can be compared; we follow
that tradition.

3. Fixed-population results

We assume in this section that the population is a fixed set of 𝑛 individuals,
𝐼 = {1,… , 𝑛}with 𝑛 ≥ 3. The set𝑈 of outcomes is𝑈 = ℝ𝐼. In a slight abuse of
notation, it will sometimes be useful to consider subsets of 𝐼, whichwewill call
𝑁 in this section, and to consider the utility distribution of the subpopulation
within𝑁 that is an element of ℝ𝑁.

Our first results are based on two dominance principles, one for society
and one for individuals. In our social dominance principle, the notation𝑓(𝑠) ≿
𝑔(𝑠)means “if≿ faced a binary choice between the outcome of𝑓 in 𝑠 occurring

8 See the literature on using a wide range for the critical level: Blackorby et al. 1996, Rabi-
nowicz 2009, and Gustafsson 2020.

9 This observation is an application of Parfit’s (1984, p. 362) Depletion case in the philo-
sophical population-ethics literature.
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for sure (that is, in every state), or the outcomeof𝑔 in 𝑠 occurring for sure, then
≿ would prefer the former to the latter.”

Social Statewise Dominance For all 𝑓, 𝑔 ∈ 𝐹, if 𝑓(𝑠) ≿ 𝑔(𝑠) for all
𝑠 ∈ 𝑆, then 𝑓 ≿ 𝑔. If in addition there exists 𝑠 ∈ 𝑆 such that 𝑓(𝑠) ≻ 𝑔(𝑠),
then 𝑓 ≻ 𝑔.

Social Statewise Dominance is a very weak rationality principle for social deci-
sionmaking. It means that if we are sure that a social prospect would be better
than another under any state, then we should prefer it.

For individuals, we will require a property slightly stronger than statewise
dominance, namely stochastic dominance.10

Individual Stochastic Dominance For all 𝑓, 𝑔 ∈ 𝐹, if for each 𝑖 ∈ 𝐼
there exists a bijection 𝜋𝑖 ∶ 𝑆 → 𝑆 such that 𝑓𝑖(𝜋𝑖(𝑠)) ≥ 𝑔𝑖(𝑠) for all
𝑠 ∈ 𝑆, then 𝑓 ≿ 𝑔. If in addition there exists 𝑗 ∈ 𝐼 and 𝑠′ ∈ 𝑆 such that
𝑓𝑗(𝜋𝑗(𝑠′)) > 𝑔𝑗(𝑠′), then 𝑓 ≻ 𝑔.

Individual Stochastic Dominance can be interpreted as a weak ex-ante Pareto
principle: If a prospect is better than another for all individuals (in the sense
of stochastic dominance), then it is also socially better. In that sense, it is
in the lineage of Harsanyi’s foundational result on social aggregation under
risk (Harsanyi, 1955). Note, however, that Individual Stochastic Dominance is
weaker than the usual ex-ante principles for two reasons: because it is compati-
blewith non-expected utility assessments of individual prospects, and because
it only uses an incomplete ranking of individual prospects. An interpretation
is that the social ranking needs not always respect individual preferences, but
instead only respects a part of individual preferences: that part that is compat-
ible with stochastic dominance (assuming that individual preferences at least
respect this principle).11

10 The definition of stochastic dominance used here may not be the most familiar one.
Typically, in our framework we would say that individual prospect𝑓𝑖 first-order stochastically
dominates individual prospect 𝑔𝑖 if for all 𝑧 ∈ ℝ |{𝑠 ∈ 𝑆 ∶ 𝑓𝑖(𝑠) ≤ 𝑧}| ≤ |{𝑠 ∈ 𝑆 ∶ 𝑔𝑖(𝑠) ≤ 𝑧}|
(with a strict dominance if the inequality is strict for some 𝑧 ∈ ℝ). It can easily be verified
that our definition is equivalent. We use this formulation because it is similar to that in our
Correlated Stochastic Dominance for Sure Individuals principle below.

11 Many non-expected utility models of choice are compatible with first-order stochastic
dominance in the context of risk. For instance, Chew and Epstein (1989) studied extensions
of the rank-dependent expected utility model and conditions to obtain first-order stochastic
dominance for a large class of models. Also, Tversky and Kahneman (1992) developed the
cumulative prospect theory model to ensure compatibility with first-order stochastic domin-
ance.
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Recall the conflict between Individual Stochastic Dominance Dominance
and the egalitarian intuition behind Table 2. This conflict emerges, in fact,
from the Anteriority axiom, which is weaker than Individual Stochastic Dom-
inance and which says that the social preorder only depends on which pro-
spect each individual faces, that is:

Anteriority For all 𝑓, 𝑔 ∈ 𝐹, if for each 𝑖 ∈ 𝐼 there exists a bijection
𝜋𝑖 ∶ 𝑆 → 𝑆 such that 𝑓𝑖(𝜋𝑖(𝑠)) = 𝑔𝑖(𝑠) for all 𝑠 ∈ 𝑆, then 𝑓 ∼ 𝑔.

McCarthy et al. (2020) have argued that Anteriority expresses a weak sense
in which the social preorder is ex-ante. So our characterization results can be
seen as attractive to people endorsing a weak ex-ante view, or as additional
arguments for people who resist that view.

The first step is to show that those two dominance principles, togetherwith
Completeness for Sure Prospects, imply the following separability property for
sure prospects:

Separability for Sure Prospects For any𝑁 ⊂ 𝐼, for any 𝑢, 𝑣 ∈ ℝ𝑁 and
𝑤, 𝑤̂ ∈ ℝ𝐼⧵𝑁, 𝑢𝑤 ≿ 𝑣𝑤 if and only if 𝑢𝑤̂ ≿ 𝑣𝑤̂.

Lemma 1. If the social ordering ≿ satisfies Completeness for Sure Prospects, So-
cial Statewise Dominance and Individual Stochastic Dominance, then it satisfies
Separability for Sure Prospects.

Proof. The proof is by contradiction. Assume that 𝑁 ⊂ 𝐼, 𝑢, 𝑣 ∈ ℝ𝑁 and
𝑤, 𝑤̂ ∈ ℝ𝐼⧵𝑁 are such that𝑢𝑤 ≿ 𝑣𝑤 but 𝑣𝑤̂ ≻ 𝑢𝑤̂. Consider the three following
prospects 𝑓, 𝑔, and ℎ (where each row gives the vector of utilities in a specific
state of the world):

state 𝑓 𝑔 ℎ

1 𝑢𝑤 𝑣𝑤 𝑢𝑤
2 𝑢𝑤̂ 𝑢𝑤̂ 𝑣𝑤̂
3 𝑢𝑤 𝑢𝑤 𝑢𝑤
⋮ ⋮ ⋮ ⋮
𝑚 𝑢𝑤 𝑢𝑤 𝑢𝑤

By Social Statewise Dominance, given that 𝑢𝑤 ≿ 𝑣𝑤, we must have 𝑓 ≿ 𝑔.
By Social Statewise Dominance, given that 𝑣𝑤̂ ≻ 𝑢𝑤̂, we must have ℎ ≻ 𝑓.
Hence, by transitivity, we should have ℎ ≻ 𝑔. But it is the case that for all
𝑖 ∈ 𝑁 𝑔𝑖(1) = ℎ𝑖(2), 𝑔𝑖(2) = ℎ𝑖(1), and 𝑔𝑖(𝑠) = ℎ𝑖(𝑠) for all 𝑠 ∈ {3,… ,𝑚},
while 𝑔𝑗(𝑠′) = ℎ𝑗(𝑠′) for all 𝑗 ∈ (𝐼 ⊂ 𝑁) and 𝑠′ ∈ 𝑆. So, Individual Stochastic
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Dominance requires 𝑔 ∼ ℎ, a contradiction. Completeness for Sure Prospects
implies that, if we do not have 𝑣𝑤̂ ≻ 𝑢𝑤̂, we must have 𝑢𝑤̂ ≿ 𝑣𝑤̂. y

Note that for this first result, we do not need the full force of Individual
Stochastic Dominance, but only Anteriority.

Lemma 1 is already a big step towards additive separability, becausewe now
have a strong separability condition. But to obtain our fixed-population main
result, we need two additional technical properties.

Continuity For all 𝑢 ∈ 𝑈, the sets {𝑣 ∈ 𝑈|𝑢 ≿ 𝑣} and {𝑣 ∈ 𝑈|𝑣 ≿ 𝑢} are
closed.

Compensation For any 𝑢, 𝑣 ∈ 𝑈 and 𝑖 ∈ 𝐼, there exists 𝑧 ∈ ℝ such that,
if 𝑤 ∈ 𝑈 is defined by 𝑤𝑖 = 𝑧 and 𝑤𝑗 = 𝑣𝑗 for all 𝑗 ≠ 𝑖, then 𝑢 ∼ 𝑤.

Compensation means that we can compensate losses or gains of all but one
individuals by adjusting the welfare level of the last individual.12 Although
Compensation may intuitively appear utilitarian, it is consistent with views
that are sensitive to distribution, such as equally-distributed-equivalent egal-
itarianism (𝜙−1 ( 1𝑛 ∑𝑖 𝜙(𝑢𝑖))) and rank-discounted generalized utilitarianism
(∑[𝑟] 𝛽

𝑟𝜙(𝑢𝑟), where [𝑟] indicates rank from worst-off), if 𝜙 is an unbounded
increasing transformation.

Theorem 1. The following statements are equivalent:

(1) The social preorder ≿ satisfies Completeness for Sure Prospects, Social
Statewise Dominance, Individual Stochastic Dominance, Continuity and
Compensation.

(2) ≿ is a complete social order and there exist continuous, increasing and
unbounded functions 𝜙𝑖 ∶ ℝ → ℝ such that:

𝑓 ≿ 𝑔⟺∑
𝑠∈𝑆

1
𝑚∑
𝑖∈𝐼
𝜙𝑖(𝑓𝑖(𝑠)) ≥ ∑

𝑠∈𝑆

1
𝑚∑
𝑖∈𝐼
𝜙𝑖(𝑔𝑖(𝑠)).

An impartiality axiom would replace 𝜙𝑖 with a shared 𝜙.
The proof is in the Appendix. It has two steps that we describe here infor-

mally. The first step is to derive additive separability within a state (or for sure
prospects). It relies on Separability for Sure Prospects, using Lemma 1, and on
the theorem by Debreu (1960) on additive representations. The second step

12 Such a property is sometimes named Solvability in the literature (see for instance Pivato
and Tchouante, 2023).

10



is to construct the across-state additivity of social expected utility. Informally,
this is done by combining the use of the additive formula within a state and
Stochastic Dominance for Sure Individuals tomove the consequences of other
states all into one state. This is illustrated by the following two-by-two exam-
ple (which disregards 𝜙 for illustration), where columns are individuals, rows
are two equiprobable risky states (𝑠1 and 𝑠2), and 𝑥, 𝑦, 𝑧, and𝑤 are real lifetime
utilities:

𝑠1
𝑠2
[ 𝑥 𝑦𝑤 𝑧 ] ∼ [

𝑥 + 𝑦 0
0 𝑤 + 𝑧 ] ∼ [

𝑥 + 𝑦 𝑤 + 𝑧
0 0 ] ∼ [

𝑥 + 𝑦 + 𝑤 + 𝑧 0
0 0 ] .

The first equivalence uses Social Statewise Dominance and the additive struc-
turewithin states. The second equivalence uses StochasticDominance for Sure
Individuals. The third equivalence again uses Social StatewiseDominance and
the additive structure within states.

Notice that we can derive Theorem 1 with even weaker principles. As ex-
plained before, Lemma 1 only requires Anteriority. Similarly, our full proof
only requires Anteriority and a Pareto-like property that is implied by Indi-
vidual Stochastic Dominance (this is detailed in the proof). So Theorem 1 can
be reformulated using Anteriority and this Pareto-like property in place of
Individual Stochastic Dominance. However, we present Individual Stochastic
Dominance because it foreshadows our variable-population theorem.

Finally, notice that here or in our variable-population result, if 𝜙 is con-
cave, then our criterion would be an instance of “prioritarianism,” which is
the name for an additively-separable social welfare function which gives pri-
ority to worse-off individuals. A Pigou-Dalton axiom for transfers of lifetime
utility would be sufficient for this curvature of 𝜙.

4. Variable-population results

Theorem 1 is a powerful weakening of the Harsanyi approach. But fixed-
population utilitarianism leaves open the question of how to expand to
variable-population questions — which are the real-world questions of much
actual economic policy decision-making. Blackorby et al. (2005) detail many
variable-population social welfare functions (such as Average Utilitarianism
or Number-Dampened Utilitarianism) that simplify to fixed-population
utilitarianism in fixed-population cases. This section shows how social and
individual dominance further narrow down the possibilities for utilitarianism
in a variable-population setting. We show that our axioms imply a specific
family of generalized utilitarianisms for variable-population cases, namely,
Expected Total Utilitarianism that corresponds in the sure case (absent any
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risk) to the well-known Critical-Level Generalized Utilitarianism (henceforth
CLGU, Blackorby et al., 2005).

Here we take advantage of the variable-population setting — which has its
own “existence independence” route to additive separability, due to Blackorby
and Donaldson (1984) — to weaken our assumptions. In particular, Individ-
ual StochasticDominance, in the fixed-population setting, is inconsistent with
making the egalitarian choice that𝑓∗∗ ≻ 𝑔∗∗ in Table 2, but the weaker axiom
we use here is consistent with that choice. Moreover, in the fixed-population
case, we use the Compensation principle, but this may not be obviously ap-
pealing from some ethical viewpoints. By moving to the variable-population
case, we will be able to instead use the principles of Anonymity and Critical
Level for Egalitarian Expansion, specified below.

In this section, the set of potential individuals who may or may not exist
is 𝐼 = ℕ. In an outcome, only a non empty finite population 𝑁 ∈ 𝑁 exists.
We thus define 𝑈 = ⋃𝑁∈𝑁 ℝ

𝑁 as the set of possible outcomes when at least
one individual exists. For each population𝑁 ∈ 𝑁, we also denote 𝑈𝑁 = {𝑢 ∈
𝑈|𝑁(𝑢) = 𝑁} the set of outcomes such that the population is𝑁.

We adopt six principles that are properties of the social preorder ≿. Com-
pleteness for Sure Prospects and Social Statewise Dominance are the same as
in the previous sections. We next have three principles that we expect to be
uncontroversial in the economics literature.

Anonymity for Sure Outcomes For all 𝑢, 𝑣 ∈ 𝑈, if 𝑛(𝑢) = 𝑛(𝑣) and
there exists a bijection 𝜋 ∶ 𝑁(𝑢) → 𝑁(𝑣) such that 𝑢𝑖 = 𝑣𝜋(𝑖) for all
𝑖 ∈ 𝑁(𝑢), then 𝑢 ∼ 𝑣.

Same-Population Continuity for Sure Outcomes For all𝑁 ∈ 𝑁, for all
𝑢 ∈ 𝑈𝑁, the sets {𝑣 ∈ 𝑈𝑁|𝑢 ≿ 𝑣} and {𝑣 ∈ 𝑈𝑁|𝑣 ≿ 𝑢} are closed.

Critical Level for Egalitarian Expansion There exists 𝑐 ∈ ℝ such that,
for any𝑁 ∈ 𝑁 and 𝑗 ∈ (𝐼 ⧵ 𝑁), if 𝑢 and 𝑣 ∈ 𝑈 are defined by𝑁(𝑢) = 𝑁,
𝑁(𝑣) = 𝑁 ∪ {𝑗}, 𝑣𝑖 = 𝑢𝑖 = 𝑐 for all 𝑖 ∈ 𝑁 and 𝑣𝑗 = 𝑐, then 𝑢 ∼ 𝑣.

Notice that these three axioms — Anonymity and Same-Population Continu-
ity and Critical Level for Egalitarian Expansion — each only apply to compar-
isons among sure outcomes (we suppress this in the title of the critical level
axiom for brevity).

Critical Level for Egalitarian Expansion asserts that there is a wellbeing
level such that a one-person expansion of a population in which everyone is
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at that level is indifferent.13 This weak axiom would be acceptable to many
diverse variable-population social welfare functions named and studied in
the literature, including average utilitarianism, total utilitarianism, maximin
(Blackorby et al., 2005, p. 176), critical-level leximin (Blackorby et al., 2005,
p. 169), number-dampened generalized utilitarianism, (Blackorby et al., 2005,
p. 172), and rank-discounted critical-level generalized utilitarianism (Asheim
and Zuber, 2014, p. 632). It is important to notice what this axiom does not
assume. It does not assume that the critical-level is fixed, whatever the pre-
existing population: It only applies to egalitarian populations with each life-
time utility at the critical level. So, it does not assume that a critical level always
exists for each population.

The heart of our variable-population characterization is our stochastic
dominance axiom for individuals: Correlated Stochastic Dominance for
Sure Individuals. This axiom formalizes the principle behind our motivating
example in Table 1. To adapt Individual Stochastic Dominance to the variable-
population setting, we apply the principle only to individuals who are sure to
exist — like Bob is in Table 1’s motivating example. Additionally, this axiom
only applies when states of the world where not-sure-to-exist individuals
exist and their utilities conditional on existence are left unchanged.14

Correlated Stochastic Dominance for Sure Individuals For all 𝑓, 𝑔 ∈ 𝐹,
if:

(i) 𝑆𝑖(𝑓) = 𝑆𝑖(𝑔) for all 𝑖 ∈ 𝐼;
(ii) for all 𝑗 ∈ 𝐼 such that 𝑆𝑗(𝑓) ∉ {∅, 𝑆}, there exists 𝑥𝑗 ∈ ℝ such that
𝑓𝑗(𝑠) = 𝑔𝑗(𝑠) = 𝑥𝑗 for all 𝑠 ∈ 𝑆𝑗(𝑓);

(iii) there exists a bijection 𝜎 ∶ 𝑆 → 𝑆 such that for all 𝑘 ∈ 𝐼 such that
𝑆𝑘(𝑓) = 𝑆 and all 𝑠 ∈ 𝑆, 𝑓𝑘(𝜎(𝑠)) ≥ 𝑔𝑘(𝑠);

then 𝑓 ≿ 𝑔.
If, in addition, there exists 𝑙 ∈ 𝐼 such that 𝑆𝑙(𝑓) = 𝑆 and 𝑠′ ∈ 𝑆 such that
𝑓𝑙(𝜎(𝑠′)) > 𝑔𝑙(𝑠′), then 𝑓 ≻ 𝑔.

This axiom, Correlated Stochastic Dominance for Sure Individuals, has three
important features:

13 Fleurbaey and Zuber (2015) and Spears and Zuber (2023) call this axiom simply “Egali-
tarian Expansion,” but we use this name to emphasize that it also serves the role of our critical
level axiom in characterizing CLGU.

14 We thank Marcus Pivato for suggesting this formulation of Correlated Stochastic Dom-
inance for Sure Individuals.
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• In condition (i), individuals exist in the same states of the world in the
two social prospects 𝑓 and 𝑔 being compared, which equivalently
means that in each state of the world the populations existing with 𝑓
and 𝑔 are the same. The principle does not speak to situations with
different populations in a state of the world.

• In condition (ii), people who do not exist for sure either do not exist at
all, or they do not bear any risk and exist with the same level of utility
in 𝑓 and 𝑔. People who do not necessarily exist, in the comparison
between 𝑓 and 𝑔, are altogether unaffected.

• For people who are sure to exist, the condition (iii) entails that the
individual prospect they face in 𝑓 stochastically dominates the one
they face in 𝑔. But, in fact, condition (iii) is weaker than individual
stochastic dominance because the same permutation of states 𝜎 is used
for all individuals.

Notice, then, that Correlated Stochastic Dominance for Sure Individuals re-
quires that 𝑔∗ ≻ 𝑓∗ in the example from Table 1 but it permits any rank-
ing of 𝑓∗∗ and 𝑔∗∗ in Table 2, including the non-utilitarian judgment that
𝑓∗∗ ≻ 𝑔∗∗. We cannot conclude from Correlated Stochastic Dominance for
Sure Individuals that𝑓∗∗ and 𝑔∗∗ in Table 2 are socially equivalent, because to
obtain dominance we need to use different permutations of states for Ann and
Bob. Yet we can conclude for Table 1 that 𝑔∗ ≻ 𝑓∗ because only Bob exists for
sure, so we can permute the outcome for Bob in states 1 and 2. These examples,
therefore, distinguish Correlated Stochastic Dominance for Sure Individuals
fromAnteriority, because Anteriority would immediately imply the utilitarian
judgement that𝑓∗∗ ∼ 𝑔∗∗.15 Indeed, although the representation in Theorem
2 implies that 𝑓∗∗ ∼ 𝑔∗∗, no one axiom used in our variable-population the-
orem individually requires this.

Our first result is that the restricted social ordering to sure prospects must
be a CLGU social ordering. Fundamentally, we achieve additive separability
from our axioms because, in our variable population setting, Social Statewise

15 Anteriority, as written above, is not defined for variable-population cases. So consider,
further, a variable population extension of Anteriority which holds that two prospects are
equally good if each potential person faces the same individual distribution of the probability
of non existence and the same distribution of utility levels conditional on existence (McCarthy
et al., 2020). Such anAnteriority axiomwould both hold that Table 1’s𝑔∗ ≻ 𝑓∗, likeCorrelated
Stochastic Dominance for Sure Individuals, and that Table 2’s 𝑓∗∗ ∼ 𝑔∗∗. Such an Anteriority
axiom is thus stronger than Stochastic Dominance for Sure Individuals.
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Dominance andCorrelated StochasticDominance for Sure Individuals are suf-
ficient to obtain the Separability property discussed before.WithCritical Level
for Egalitarian Expansion, they also imply that there exist a fixed critical level.
The proof in theAppendix provides the details on how these properties deliver
the Critical Level Generalized Utilitarian social ordering.

Proposition 1. If ≿ satisfies Completeness for Sure Prospects, Anonymity for
Sure Outcomes, Same-Population Continuity for Sure Outcomes, Critical Level
for Egalitarian Expansion, Social Statewise Dominance, and Correlated Stochas-
tic Dominance for Sure Individuals, then there exists a continuous and increas-
ing function 𝜙 ∶ ℝ → ℝ and a number 𝑐 ∈ ℝ such that for all 𝑢, 𝑣 ∈ 𝑈, 𝑢 ≿ 𝑣 if
and only if ∑𝑖∈𝑁(𝑢) [𝜙(𝑢𝑖) − 𝜙(𝑐)] ≥ ∑𝑖∈𝑁(𝑣) [𝜙(𝑣𝑖) − 𝜙(𝑐)].

We can then state our main result for this section:

Theorem 2. The following statements are equivalent:

(1) The social preorder ≿ satisfies Completeness for Sure Prospects,
Anonymity for Sure Outcomes, Same-Population Continuity for Sure
Outcomes, Critical Level for Egalitarian Expansion, Social Statewise
Dominance and Correlated Stochastic Dominance for Sure Individuals.

(2) ≿ is a complete social order and there exists a continuous and
increasing function 𝜙 ∶ ℝ → ℝ and a number 𝑐 ∈ ℝ such that for all
𝑓, 𝑔 ∈ 𝐹, 𝑓 ≿ 𝑔 if and only if

∑
𝑠∈𝑆

1
𝑚[ ∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙(𝑓𝑖(𝑠)) − 𝜙(𝑐)]] ≥ ∑

𝑠∈𝑆

1
𝑚[ ∑
𝑖∈𝑁(𝑔(𝑠))
[𝜙(𝑔𝑖(𝑠)) − 𝜙(𝑐)]].

The basic approach is to use the within-state additivity of CLGU to con-
struct the across-state additivity of social expected utility.16 Informally, this is
done first by using CLGU to have a separate set of individuals with welfare
different from 𝑐 in each state of the world. Then we use Correlated Stochastic
Dominance for Sure Individuals to move the consequences of other states all
into one state. Then we can apply CLGU to get an additive formula. Consider

16 An alternative version of Theorem 2 would substitute Extended Replication Invariance
(Blackorby et al., 2005, p. 165) and Intermediate Existence of Critical Levels (Blackorby et al.,
2005, p. 160) instead of Critical Level for Egalitarian Expansion, characterizing the same social
welfare function.
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the following example for intuition of the proof. There are four possible indi-
viduals (in columns) and two equiprobable states (in rows); 𝑥, 𝑦, 𝑧, and 𝑤 are
real lifetime utilities:

𝑠1
𝑠2
[ 𝑥 𝑦 𝛺 𝛺𝛺 𝑤 𝑧 𝛺 ] ∼ [

𝑥 𝑦 𝑐 𝑐
𝛺 𝛺 𝑤 𝑧 ] ∼ [

𝑥 𝑦 𝑤 𝑧
𝛺 𝛺 𝑐 𝑐 ] .

The first equivalence uses CLGU from Proposition 1 in each state of the world
(and then Social Statewise Dominance). The second equivalence uses Corre-
lated Stochastic Dominance for Sure Individuals (the last two individuals).We
can then use the additive formula of CLGU applied to the first state of the last
prospect. The full proof is presented in the Appendix.

Notice that Correlated Stochastic Dominance for Sure Individuals is inde-
pendent of the other axioms of Theorem 2, because the other axioms are each
consistent with Expected Average Utilitarianism, but Correlated Stochastic
Dominance for Sure Individuals is not. The next logical weakening of Corre-
lated Stochastic Dominance for Sure Individuals would be to weaken stochas-
tic dominance to statewise dominance, but this would not be sufficient for
Theorem 2, which suggests that Correlated Stochastic Dominance for Sure
Individuals may be the weakest axiom that can narrow variable-population
utilitarianism to Expected Total Utilitarianism.

In this section, contrary to the previous one, we have assumed Anonymity,
which is a widely admitted principle of social ethics. However, Anonymity
may not make sense for other applications of our result (as discussed below).
In an intertemporal setting, it has been argued that individuals living in dif-
ferent generations perhaps should not be treated symmetrically because there
are permissible reasons to discount future utility. The core of our line of ar-
guments however does not depend on Anonymity. We show in the Supple-
mentary Material (Section S.A) that we obtain the expected value of a non-
symmetric, additively-separable function when we replace Anonymity with
Compensation.

5. Further applications

In this section, we note that our formal results can be usefully reinterpreted if
the dimensions and utility-bearers are understood in different ways.17 We give

17 Mongin and Pivato (2015) have made a similar observation, in surveying multiple ap-
plications of their own result about two-dimensional separability, although their result and
applications are different. A similar discussion can also be found in Li et al. 2023.
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an example for macroeconomics and another for individual rational choice.
Where our main setting uses risky states and individuals as the two dimen-
sions, our applications below use, first, time periods and individuals and, sec-
ond, time periods and risky states.

5.1 macroeconomic welfare accounting with time
separability: time periods and individuals

Macroeconomists typically use a social welfare function that is additively sep-
arable across time periods and sums individual time-period-specific utility
within time periods. This practice has two important implications: that in-
dividual lifetime utility is also additively time-separable, and that the implied
population ethics is totalist. For example, the climate-economymodel ofNord-
haus (2017), like other leading climate-policy models, maximizes a social ob-
jective function ∑𝑡 𝛼𝑡 ∑𝑖 𝑢𝑖𝑡, for individuals 𝑖 and periods 𝑡 experiencing flow
utility 𝑢𝑖𝑡 — or more precisely ∑𝑡 𝛼𝑡𝐿𝑡𝑢̄𝑡, where 𝐿𝑡 is population size and 𝑢̄𝑡
is average wellbeing in 𝑡. Particularly relevantly to our paper, Klenow et al.
(2022) use this functional form (without time discount factors 𝛼𝑡) to conduct
a growth accounting exercise that decomposes aggregate growth into popula-
tion growth and improvements in per-person living standards.

These conventions invite the question: How can this social objective func-
tion be normatively justified? Our Theorem 2 provides a justification, if cells
are reinterpreted as individual-by-time flows of utility, risky states are reinter-
preted as discrete time periods (ignoring risk for this application), and poten-
tial individuals have lives composed of a variable number of time periods.

• Social Statewise Dominance axiom would become Social Period-wise
Dominance, holding that an intertemporal allocation 𝑓 is better than
another 𝑔 if each time period of 𝑓 would be better, if made permanent,
than the corresponding time period of 𝑔, if made permanent.

• Correlated Stochastic Dominance for Sure Individuals would become
Temporal dominance for fixed-longevity individuals, holding that an
intertemporal allocation 𝑓 is better than another 𝑔 if

– every person who only lives for some (but not all) populated time
periods is unaffected by a choice between 𝑓 and 𝑔, and

– every person who lives throughout the entire span of populated
time has a lifelong distribution of period well-being in 𝑓 that
dominates that person’s lifelong distribution of well-being in 𝑔.
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These, combined with the technical axioms, would yield additivity across and
within time periods.18 So this result can justify Klenow, et al.’s (2022) Total Util-
itarian growth accounting, with the same sort of weak axioms that justify our
result.19 To be sure, various intuitions (including a taste for pattern goods such
as flat or increasing utility profiles over time) might lead an economist to re-
ject Temporal dominance for fixed-longevity individuals, but such economists
would already have rejected macroeconomists’ entire time-separable project.
This is formally analogous to, in our original social risk setting, a concern for
egalitarianism that might bring about a rejection of utilitarianism and our ax-
ioms that characterize it.

5.2 individual decision-making for a lifetime of risky
length and per-period utility: time periods and risky
states

Consider an individual’s rational choice over a risky temporal distribution of
state-specific period flows of utility, 𝑢𝑠𝑡, where 𝑠 are risky states and 𝑡 are time
periods when the individual may or may not be alive and, if so, would experi-
ence a flow utility. Reinterpreting our model of social risky choice as a model
of individual risky choice, with 𝑖 in ourmodel now becoming periods 𝑡 in a life
of unknown length, results in the decision criterion that maximizes the expec-
tation of the sum of period-specific utility flows over a lifetime: ∑𝑠

1
𝑚 ∑𝑡 𝑢𝑠𝑡.

• Social Statewise Dominance axiom would become Individual statewise
dominance, but its interpretation would otherwise be similar to the
interpretation of statewise dominance in our main setting, holding that
a risky intertemporal allocation 𝑓 is better than another 𝑔 if each state
of 𝑓 would be better, if received for certain, than the corresponding
state of 𝑔, if received for certain.

• Correlated Stochastic Dominance for Sure Individuals would become
Stochastic dominance for fixed-longevity outcomes, holding that a
risky intertemporal allocation 𝑓 is better than another 𝑔 if

18 Pure social time preference could be accommodated by period weights which would be
analogous to probabilities in our interpretation. Note that Blackorby et al. (1995), in an early
contribution to population ethics, also derive additive separability from lives born at different
times, but consider only lifetime utilities, not period-specific utility flows.

19 In fact, because they compare time periods with other time periods, without integrat-
ing over time and without time discounting, our Proposition 1 is sufficient to justify their
approach.
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– every time period in which the decision-maker is not certain to
live is unaffected by a choice between 𝑓 and 𝑔, and

– every time period in which the decision-maker is certain to live
has a period-specific lottery of well-being in 𝑓 that dominates that
period’s lottery of well-being in 𝑔.

This would be a novel justification of individual-level expected utility and of
evaluating lifetime utility as the sum of period utility flows. As in the macroe-
conomic interpretation, the axioms rule out certain pattern goods. So whether
or not this application makes normative sense for a prudent decision-maker
may depend upon your interpretation of personal identity over a lifetime and
whether lifetime pattern goods make sense and are valuable.

As indicated above, we can also dispense with the Anonymity assumption
that, in the present context, would mean treating all time periods in the same
way. So, we can allow for time discounting in individual decisions. Our key
result is about expectation-taking and having time-separable preferences.

6. Discussion and conclusion

6.1 extension to more general probability distributions

Until now, we have assumed that we have a finite number 𝑚 of states of the
world, all of them having the same probability 1/𝑚 to occur. In the Supple-
mentary Material (Section S.B), we show that the results very easily extend to
a case with events whose probability of occurrence is a rational number.

The main intuition is as follows. Consider two social prospects 𝑓 and 𝑔
and let 𝑑 be the least common denominator of the probability of the events
generated by 𝑓 and 𝑔. It means that we can divide each events into subevents
of probability 1/𝑑. And that the two prospects can be seen as inducing conse-
quences on 𝑑 equiprobable states of the world. Because we can apply all of our
results to spaces where each state of the world has the same probability 1/𝑑 to
occur, this extends to cases where events have a rational probability.

There are additional steps due to the fact that we must relate 𝑓 and 𝑔 to
acts that induce the same partition into 𝑑 equiprobable events. This relation
is done by appropriately adapting the two key axioms of Individual Stochastic
Dominance and Correlated Stochastic Dominance for Sure Individuals. All
other axioms straightforwardly adapts to the more general framework.
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6.2 related literature

Our paper joins a recent literature that has characterized objective functions
with two dimensions of value. A theme of this literature is that separability
in one dimension creates pressure for separability in another. None of these
papers connect axioms as weak as ours to a conclusion as strong as ours.

Harsanyi’s (1955) aggregation theorem is recognized as a foundation of util-
itarian welfare economics, which is widely used throughout macroeconomics
and public economics. As Fleurbaey (2009) summarized, Harsanyi showed
that “in the presence of risk, weighted utilitarianism is the only criterion that
satisfies the ex-ante Pareto principle and can be written as the expected value
of social welfare,” where ex-ante Pareto, in Harsanyi’s case, meant assuming
complete individual expected utilities. Harsanyi’s result has received much
attention and has been weakened in several directions. Fleurbaey (2009),
in a founding contribution to this recent literature, weakens Harsanyi’s
assumptions in a setting of fixed-population social risk. Fleurbaey uses a
weak dominance axiom like ours for social risk, but maintains an assumption
of expectation-taking for individual ex-ante Pareto. In an uncertainty frame-
work à la Savage, without objective probabilities, Mongin and Pivato (2015)
obtained the Harsanyi’s result with assumptions akin to statewise dominance
for the social ordering and ex-ante Pareto for individuals, without assuming
that individuals maximize an expected utility. A similar result is obtained by
Zuber (2016) in an uncertainty framework à la Anscombe–Aumann. Li et al.
(2023) recall the generality of this result that applies also to the context of
risk and time or time and individuals as explained above. One way that all
of these axiomatizations are stronger than ours is in requiring an individual
order, where our axiom for individuals requires only dominance; also we do
not assume a complete social ordering of all prospects.

Another contribution is the paper by McCarthy et al. (2020). They con-
sider a framework with objective probabilities and use the property of An-
teriority, which is related to our properties of Individual Stochastic Domin-
ance and Stochastic Dominance for Sure Individuals. They obtain a “quasi-
utilitarian” result with axioms that are similar to ours. But it must be clarified
that their result is not exactly utilitarian in the sense that we use here. What
they get is that the society should evaluate social prospects as if one of the
individuals in the society was facing an average prospect, in the sense that
she faces the prospect of each individual with equal probability. To clarify the
difference, assume that individuals assess prospects only on the basis of first
order stochastic dominance (to be consistent with our axioms). Consider a
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society with two individuals and two prospects: in one prospect the two indi-
viduals get utility 1/2 for sure, in the other prospect one individual gets utility
1 for sure and the other gets 0 for sure. McCarthy et al. (2020) require that
we assess these prospects like an individual would do if she compared a sure
outcome of 1/2 with the lottery of having 0 or 1 with equal probability. Given
that the individual uses first order stochastic dominance, these two prospects
cannot be compared. On the contrary, our approach can compare them and
will prefer the former to the latter if 𝜙(1/2) > 12𝜙(0) +

1
2𝜙(1)— for instance

when 𝜙 is concave. McCarthy et al. (2020) could obtain this result by further
assuming that individuals maximize an expected utility — which we do not
assume.

Harsanyi (1955) only considered a fixed-population case. We show that the
axioms leading toHarsanyi’s result can be significantly weakened in a variable-
population setting. There exist other extensions of Harsanyi’s to the variable
population framework. A founding result is by Blackorby et al. (1998) but they
assume social expected utility as well as some utility independence for un-
concerned individuals (or individual-level expected utility). Other, more re-
cent, papers do combine the logic of two dimensions with variable population.
Spears and Zuber (2023), for example, extendHarsanyi’s result to variable pop-
ulation, butmaintain an assumption of social expected utility throughout.Mc-
Carthy et al. (2020), which we mentioned above, is a recent contribution with
wide mathematical generality, including the variable-population case. Their
variable-population results differ from ours in assuming an axiom that they
call Omega Independence that contains a comparison of existence in a risky
outcome to non-existence. As explained above, they also do not get a general-
ized utilitarian criterion in the sense that we use here. Finally, Thomas (2022)
offers an overview of the relationship between separability and additivity for
the philosophical population-ethics literature. Thomas makes use of the An-
teriority axiom that we have discussed.

Any axiomatization of a social welfare function can be read as an argu-
ment for that approach or as a warning of what the approach entails, depend-
ing upon one’s perspective. To a reader who shares the interpretation that the
axioms of Theorem 2 are weak and normatively attractive, our result raises the
theoretical cost of departing either from additively-separable utilitarianism or
from social expectation-taking. Because, as we have shown, these axioms are
weaker in a variable-population setting than in a fixed-population setting, the
theoretical cost of departing from additively-separable utilitarianism or from
social expectation-taking is greater in a variable-population setting than in a
fixed-population setting. As the large changes over time in the size of the hu-
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man population have shown, the relevant economic world is such a variable-
population setting.
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A. Proof of Theorem 1

Proof. It is straightforward to check that statement 2. implies statement 1.
Then, the proof has two steps.
Step 1: an additive representation of ≿ for sure prospects. By Completeness
for Sure Prospects, we know that ≿ is a complete pre-order for sure prospects.
By Lemma 1, ≿ satisfies Separability for Sure Prospects. By definition of ≿ and
Individual stochastic dominance, it is easily shown that ≿ satisfies the follow-
ing Pareto-like property (mentioned in the text on page 11):

for any 𝑢, 𝑣 ∈ ℝ𝐼 if 𝑢 ≥ 𝑣 and 𝑢 ≠ 𝑣, then 𝑢 ≻ 𝑣,

where ≥ means at least as good for each person. Hence, by the well-known
result of Debreu (1960), there exist continuous and increasing functions 𝜙𝑖 ∶
ℝ → ℝ such that, for all 𝑢, 𝑣 ∈ 𝑈,

𝑢 ≿ 𝑣⟺∑
𝑖∈𝐼
𝜙𝑖(𝑢𝑖) ≥ ∑

𝑖∈𝐼
𝜙𝑖(𝑣𝑖).

Without loss of generality, we can normalize the 𝜙𝑖 functions so that 𝜙𝑖(0) = 0
and ∑𝑖∈𝐼 𝜙𝑖(1) = 1.

Let us show that each 𝜙𝑖 is unbounded. Assume by contradiction that 𝜙𝑖
is bounded above for some 𝑖 ∈ 𝐼 (the reasoning is similar for the case where
𝜙𝑖 would be bounded below). Given that 𝜙𝑖 is increasing, it means that there
exists 𝐵 ∈ ℝ such that, for any 𝜀 > 0 there exists 𝐾 ∈ ℝ such that, for any
𝑧 ≥ 𝐾, 0 < 𝐾 − 𝜙𝑖(𝑧) < 𝜀. As a consequence, for any 𝜀 > 0 there exists 𝐾 ∈ ℝ
such that, for any 𝑧 ≥ 𝐾 and any 𝑥 ∈ ℝ, 𝜙𝑖(𝑥) − 𝜙𝑖(𝑧) < 𝜀. Now consider any
𝑢, 𝑣 ∈ 𝑈 such that 𝑢𝑗 > 𝑣𝑗 for some 𝑗 ≠ 𝑖 and 𝑢𝑘 = 𝑣𝑘 for all 𝑘 ≠ 𝑖, 𝑗. Let
𝜀 = 𝜙𝑗(𝑢𝑗) − 𝜙𝑗(𝑣𝑗) > 0. So, by the reasoning above, there exists 𝑧 ∈ ℝ such
that 𝜙𝑖(𝑥) − 𝜙𝑖(𝑧) < 𝜀 for all 𝑥 ∈ ℝ. Assume that 𝑢𝑖 = 𝑧. By compensation,
there exists ̃𝑧 ∈ ℝ such that, if 𝑤 ∈ 𝑈 is defined by 𝑤𝑗 = 𝑣𝑗 for all 𝑗 ≠ 𝑖 and
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𝑤𝑖 = ̃𝑧 then 𝑢 ∼ 𝑤. But, by the representation above, this would imply:

𝜙𝑖(𝑧) + 𝜙(𝑢𝑗) = 𝜙𝑖( ̃𝑧) + 𝜙(𝑣𝑗),

and therefore 𝜙𝑖(𝑧) − 𝜙𝑖( ̃𝑧) = 𝜀, which is impossible. Hence, it cannot be the
case that 𝜙𝑖 is bounded above (nor bounded below by a similar reasoning).
Step 2: an expected utility representation.Consider any𝑓, 𝑔 ∈ 𝐹. Let us first
construct ̂𝑓(1), ̂𝑔(1) ∈ 𝐹 in the following way, using Compensation: ̂𝑓(1)1 (1) =
𝑧(1) and ̂𝑔(1)1 (1) = ̄𝑧(1) while ̂𝑓(1)𝑖 (1) = ̂𝑔

(1)
𝑖 (1) = 0 for all 𝑖 ≠ 1, where 𝑧(1) and

̄𝑧(1) ∈ ℝ are such that ̂𝑓(1)(𝑠) ∼ 𝑓(𝑠) and ̂𝑔(1)(𝑠) ∼ 𝑔(𝑠) (we know that such 𝑧(1)
and ̄𝑧(1) exist by Compensation). For each 𝑠 > 1, ̂𝑓(1)(𝑠) = 𝑓(𝑠) and ̂𝑔(1)(𝑠) =
𝑔(𝑠) so that ̂𝑓(1) ∼ 𝑓 and ̂𝑔(1) ∼ 𝑔 by Social Statewise Dominance. By Step 1, it
is the case that 𝜙1( ̂𝑓

(1)
1 (1)) = ∑𝑖∈𝐼 𝜙𝑖(𝑓𝑖(1)) and 𝜙1( ̂𝑔

(1)
1 (1)) = ∑𝑖∈𝐼 𝜙𝑖(𝑔𝑖(1)).

The next move is to construct two sequences of prospects ̂𝑓(1),… , ̂𝑓(𝑚)
and ̂𝑔(1),… , ̂𝑔(𝑚) with the following properties:

• 𝜙1( ̂𝑓
(𝑘)
1 (1)) = ∑𝑘𝑠=1 ∑𝑖∈𝐼 𝜙𝑖(𝑓𝑖(𝑠)), 𝜙1( ̂𝑔

(𝑘)
1 (1)) = ∑𝑘𝑠=1 ∑𝑖∈𝐼 𝜙𝑖(𝑔𝑖(𝑠)),

and ̂𝑓(𝑘)𝑖 (1) = ̂𝑔
(𝑘)
𝑖 (1) = 0 for all 𝑖 > 1;

• ̂𝑓(𝑘)𝑖 (𝑠) = ̂𝑔
(𝑘)
𝑖 (𝑠) = 0 for all 𝑖 ∈ 𝐼 and 2 ≤ 𝑠 ≤ 𝑘;

• ̂𝑓(𝑘)(𝑠) = 𝑓(𝑠) and ̂𝑔(𝑘)(𝑠) = 𝑔(𝑠) for all 𝑠 > 𝑘;

• ̂𝑓(𝑘+1) ∼ ̂𝑓(𝑘) and ̂𝑔(𝑘+1) ∼ ̂𝑔(𝑘) for all 𝑘 = 1,… ,𝑚 − 1.

Let us show that the construction is possible by recursion. Notice that all
the properties (except the last) are already satisfied by ̂𝑓(1) and ̂𝑔(1). Let 𝑘 ∈
{1,… ,𝑚 − 1} and assume that we have constructed ̂𝑓(𝑘). Let us show that we
can construct ̂𝑓(𝑘+1) with the desired properties so that ̂𝑓(𝑘+1) ∼ ̂𝑓(𝑘) (the proof
is similar for ̂𝑔(1),… , ̂𝑔(𝑚−1), and thus not repeated).

By Compensation, there exists a number ̃𝑧(𝑘+1) ∈ ℝ such that, if we define
̃𝑢(𝑘+1) ∈ 𝑈 by ̃𝑢(𝑘+1)2 = ̃𝑧(𝑘+1) and ̃𝑢

(𝑘+1)
𝑗 = 0 for all 𝑗 ∈ 𝐼 ⧵ {2}, it is the case that

̃𝑢(𝑘+1) ∼ ̂𝑓(𝑘)(𝑘 + 1). By construction and step 1, it is the case that

𝜙2 ( ̃𝑢
(𝑘+1)
2 ) = ∑

𝑖∈𝐼
𝜙𝑖 ( ̂𝑓
(𝑘)
𝑖 (𝑘 + 1)) = ∑

𝑖∈𝐼
𝜙𝑖 (𝑓𝑖(𝑘 + 1)) . (1)

Define ̃𝑓(𝑘+1) by ̃𝑓(𝑘+1)(𝑘 + 1) = ̃𝑢(𝑘+1) and ̃𝑓(𝑘+1)(𝑠) = ̂𝑓(𝑘)(𝑠) for all
𝑠 ≠ 𝑘 + 1. Social Statewise Dominance gives ̃𝑓(𝑘+1) ∼ ̂𝑓(𝑘). Next construct
̄𝑓(𝑘+1) in the following way: ̄𝑓(𝑘+1)𝑖 (𝑠) = ̃𝑓

(𝑘+1)
𝑖 (𝑠) for all 𝑠 ∈ 𝑆 and 𝑖 ≠ 2;
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̄𝑓(𝑘+1)2 (1) = ̃𝑓
(𝑘+1)
2 (𝑘 + 1), ̄𝑓

(𝑘+1)
2 (𝑘 + 1) = 0, while ̄𝑓(𝑘+1)2 (𝑠) = ̃𝑓

(𝑘+1)
2 (𝑠) for

all 𝑠 ≠ 1, 𝑘 + 1. Individual 2 faces the same individual prospect in ̄𝑓(𝑘+1) and
̃𝑓(𝑘+1), while all other individuals are not affected. By Individual stochastic

dominance, ̄𝑓(𝑘+1) ∼ ̃𝑓(𝑘+1), and by transitivity ̄𝑓(𝑘+1) ∼ ̂𝑓(𝑘).
The prospect ̄𝑓(𝑘+1) is such that ̄𝑓(𝑘+1)1 (1) = ̂𝑓

(𝑘)
1 (1), ̄𝑓

(𝑘+1)
2 (1) = ̃𝑓

(𝑘+1)
2 (𝑘 +

1) = ̃𝑢(𝑘+1)2 and ̄𝑓(𝑘+1)𝑖 (1) = 0 for all 𝑖 > 2. By Compensation, there exists a
number 𝑧(𝑘+1) ∈ ℝ such that, if we define 𝑢̄(𝑘+1) ∈ 𝑈 by 𝑢̄(𝑘+1)1 = 𝑧(𝑘+1) and
𝑢̄(𝑘+1)𝑗 = 0 for all 𝑗 ∈ 𝐼⧵{1}, it is the case that 𝑢̄(𝑘+1) ∼ ̄𝑓(𝑘+1)(1). By construction
and step 1, it is also the case that

𝜙1 (𝑢̄
(𝑘+1)
1 ) = ∑

𝑖∈𝐼
𝜙𝑖 ( ̄𝑓(𝑘+1)(1)) = 𝜙1 ( ̂𝑓

(𝑘)
1 (1)) + 𝜙2 ( ̃𝑢

(𝑘+1)
2 ) =

𝑘+1

∑
𝑠=1
∑
𝑖∈𝐼
𝜙𝑖(𝑓𝑖(𝑠)).

(Recall that𝜙1 ( ̂𝑓
(𝑘)
1 (1)) = ∑𝑘𝑠=1 ∑𝑖∈𝐼 𝜙𝑖(𝑓𝑖(𝑠)) and𝜙2 ( ̃𝑢

(𝑘+1)
2 ) = ∑𝑖∈𝐼 𝜙𝑖 (𝑓𝑖(𝑘 + 1))

– see Equation (1)). It suffices to define ̂𝑓(𝑘+1) by ̂𝑓(𝑘+1)(1) = 𝑢̄(𝑘+1) and
̂𝑓(𝑘+1)(𝑠) = ̄𝑓(𝑘)(𝑠) for all 𝑠 > 1 to obtain ̄𝑓(𝑘+1) ∼ ̂𝑓(𝑘+1) by Social Statewise

Dominance. By transitivity, ̂𝑓(𝑘) ∼ ̂𝑓(𝑘+1). It can be checked that ̂𝑓(𝑘+1) has
all the aforementioned features. Figure 1 describes the step between ̂𝑓(𝑘) and
̂𝑓(𝑘+1).
By our construction and transitivity, we have 𝑓 ∼ ̂𝑓(𝑚) and 𝑔 ∼ ̂𝑔(𝑚). But
̂𝑓(𝑚) and ̂𝑔(𝑚) are such that ̂𝑓(𝑚)𝑖 (𝑠) = ̂𝑔

(𝑚)
𝑖 (𝑠) = 0 for all 𝑖 ∈ 𝐼 and 𝑠 > 1. By

Social Statewise Dominance and Completeness for Sure Prospects, we know
that ̂𝑓(𝑚) ≿ ̂𝑔(𝑚) ⟺ ̂𝑓(𝑚)(1) ≿ ̂𝑔(𝑚)(1). By transitivity, we also have 𝑓 ≿
𝑔⟺ ̂𝑓(𝑚)(1) ≿ ̂𝑔(𝑚)(1).

Using Step 1 and the definition of ̂𝑓(𝑚) and ̂𝑔(𝑚) we get:

𝑓 ≿ 𝑔 ⟺ ̂𝑓(𝑚)(1) ≿ ̂𝑔(𝑚)(1)
⟺ ∑

𝑖∈𝐼
𝜙𝑖 ( ̂𝑓
(𝑚)
𝑖 (1)) ≥ ∑

𝑖∈𝐼
𝜙𝑖 ( ̂𝑔
(𝑚)
𝑖 (1))

⟺ ∑
𝑠∈𝑆
∑
𝑖∈𝐼
𝜙𝑖 (𝑓𝑖(𝑠)) ≥ ∑

𝑠∈𝑆
∑
𝑖∈𝐼
𝜙𝑖 (𝑔𝑖(𝑠))

⟺ ∑
𝑠∈𝑆

1
𝑚∑
𝑖∈𝐼
𝜙𝑖 (𝑓𝑖(𝑠)) ≥ ∑

𝑠∈𝑆

1
𝑚∑
𝑖∈𝐼
𝜙𝑖 (𝑔𝑖(𝑠)) .

y

B. Proof of Proposition 1

Proof. The proof has three steps.
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Figure 1: Construction of prospect ̂𝑓(𝑘+1) for 𝑘 ≥ 2

̂𝑓(𝑘) ̃𝑓(𝑘+1)

indiviuals individuals
state 1 2 3 ⋯ 1 2 3 ⋯

1 ̂𝑓(𝑘)1 (1) 0 0 ⋯ ̂𝑓(𝑘)1 (1) 0 0 ⋯
2 0 0 0 ⋯ 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑘 0 0 0 ⋯ 0 0 0 ⋯
𝑘 + 1 𝑓1(𝑘 + 1) 𝑓2(𝑘 + 1) 𝑓3(𝑘 + 1) ⋯ 0 ̃𝑓(𝑘+1)2 (𝑘 + 1) 0 ⋯
𝑘 + 2 𝑓1(𝑘 + 2) 𝑓2(𝑘 + 2) 𝑓3(𝑘 + 2) ⋯ 𝑓1(𝑘 + 2) 𝑓2(𝑘 + 2) 𝑓3(𝑘 + 2) ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

̄𝑓(𝑘+1) ̂𝑓(𝑘+1)

indiviuals individuals
state 1 2 3 ⋯ 1 2 3 ⋯

1 ̂𝑓(𝑘)1 (1) ̃𝑓(𝑘+1)2 (𝑘 + 1) 0 ⋯ ̂𝑓(𝑘+1)1 (1) 0 0 ⋯
2 0 0 0 ⋯ 0 0 0 ⋯
𝑘 0 0 0 ⋯ 0 0 0 ⋯
𝑘 + 1 0 0 0 ⋯ 0 0 0 ⋯
𝑘 + 2 𝑓1(𝑘 + 2) 𝑓2(𝑘 + 2) 𝑓3(𝑘 + 2) ⋯ 𝑓1(𝑘 + 2) 𝑓2(𝑘 + 2) 𝑓3(𝑘 + 2) ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Step 1: The social ordering ≿ satisfies Separability for Sure Prospects. We
first show that if ≿ satisfies Completeness for Sure Prospects, Social Statewise
Dominance and Correlated Stochastic Dominance for Sure Individuals, then
it also satisfies Separability for Sure Prospects, stated below for the variable
population case:

Separability for Sure Prospects For all 𝑢, 𝑣, 𝑤, 𝑤′ ∈ 𝑈 such that
𝑁(𝑢) = 𝑁(𝑣) and𝑁(𝑢) ∩ 𝑁(𝑤) = 𝑁(𝑢) ∩ 𝑁(𝑤′) = ∅, 𝑢𝑤 ≿ 𝑣𝑤 if and
only if 𝑢𝑤′ ≿ 𝑣𝑤′.

Let us first show that this is the case when𝑁(𝑤)∩𝑁(𝑤′) = ∅. The proof is by
contradiction and is similar to that of Lemma 1. It is obtained by considering
the three prospects:
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state 𝑓 𝑔 ℎ

1 𝑢𝑤 𝑣𝑤 𝑢𝑤
2 𝑢𝑤′ 𝑢𝑤′ 𝑣𝑤′
3 𝑢 𝑢 𝑢
⋮ ⋮ ⋮ ⋮
𝑚 𝑢 𝑢 𝑢

Assume for contradiction that 𝑢𝑤 ≿ 𝑣𝑤 but 𝑣𝑤′ ≻ 𝑢𝑤′. By Social Statewise
Dominance, and given that 𝑢𝑤 ≿ 𝑣𝑤, 𝑓 ≿ 𝑔. Similarly, given that 𝑣𝑤′ ≻
𝑢𝑤′, ℎ ≻ 𝑓. So, by transitivity, ℎ ≻ 𝑔. But this violates Correlated Stochastic
Dominance for Sure Individuals (The necessary people are those in𝑁(𝑢)). By
Completeness for Sure Prospects, we must have 𝑢𝑤′ ≿ 𝑣𝑤′.

Now, if it is not the case 𝑁(𝑤) ∩ 𝑁(𝑤′) = ∅, it suffices to take 𝑤̂ ∈ 𝑈
such that𝑁(𝑤̂) ∩ 𝑁(𝑤) = 𝑁(𝑤̂) ∩ 𝑁(𝑤′) = ∅. By the reasoning above, 𝑢𝑤 ≿
𝑣𝑤 ⟺ 𝑢𝑤̂ ≿ 𝑣𝑤̂ ⟺ 𝑢𝑤′ ≿ 𝑣𝑤′. Hence Separability for Sure Prospects
must hold.
Step 2: A fixed Critical Level. We show that if ≿ satisfies Completeness for
Sure Prospects, Social Statewise Dominance, Correlated Stochastic Domin-
ance for Sure Individuals, and Critical Level for Egalitarian Expansion, then
it also satisfies Fixed Critical Level:

Fixed Critical Level There exists 𝑐 ∈ ℝ such that, for any 𝑢 ∈ 𝑈 and
𝑗 ∈ (𝐼 ⧵ 𝑁(𝑢)), if 𝑣 ∈ 𝑈 is defined by𝑁(𝑣) = 𝑁(𝑢) ∪ {𝑗}, 𝑣𝑖 = 𝑢𝑖 for all
𝑖 ∈ 𝑁(𝑢) and 𝑣𝑗 = 𝑐, then 𝑢 ∼ 𝑣.

By Critical Level for Egalitarian Expansion, we already know that exists 𝑐 ∈ ℝ
such that, if ̃𝑢 ∈ 𝑈 is such that𝑁( ̃𝑢) = 𝑁(𝑢) and ̃𝑢𝑖 = 𝑐 for all 𝑖 ∈ 𝑁(𝑢), and
̃𝑣 ∈ 𝑈 is such that𝑁( ̃𝑣) = {𝑗} and ̃𝑣𝑖 = 𝑐, then ̃𝑢 ∼ ̃𝑢 ̃𝑣. We want to prove that
𝑢 ∼ 𝑢 ̃𝑣. The proof is obtained by considering the four prospects:

state 𝑓 𝑔 ℎ ℎ′

1 𝑢 ̃𝑢 ̃𝑢 ̃𝑣 𝑢 ̃𝑣
2 ̃𝑢 ̃𝑣 𝑢 ̃𝑣 𝑢 ̃𝑣 ̃𝑢 ̃𝑣
3 ̃𝑢 ̃𝑢 ̃𝑢 ̃𝑣 ̃𝑢 ̃𝑣
⋮ ⋮ ⋮ ⋮ ⋮
𝑚 ̃𝑢 ̃𝑢 ̃𝑢 ̃𝑣 ̃𝑢 ̃𝑣

By Correlated Stochastic Dominance for Sure Individuals, 𝑓 ∼ 𝑔 (people in
𝑁(𝑢) = 𝑁( ̃𝑢) are necessary). But given that ̃𝑢 ∼ ̃𝑢 ̃𝑣, we have 𝑔 ∼ ℎ by Social
Statewise Dominance. Then, ℎ ∼ ℎ′ by Correlated Stochastic Dominance for
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Sure Individuals (all individuals are necessary). By transitivity, 𝑓 ∼ ℎ′. But,
given Completeness for Sure Prospects, this is possible only if 𝑢 ∼ 𝑢 ̃𝑣 (other-
wise we have a violation of Social Statewise Dominance, given that ̃𝑢 ∼ ̃𝑢 ̃𝑣 in
states 𝑠 ≥ 3).
Step 3: A characterization of Critical Level Generalized Utilitarian. Let us
define formally the Same-Population Pareto for Sure Outcomes property.

Same-Population Pareto for Sure Outcomes For any𝑁 ⊂ 𝐼, for any
𝑢, 𝑣 ∈ ℝ𝑁, if 𝑢 ≥ 𝑣 and 𝑢 ≠ 𝑣, then 𝑢 ≻ 𝑣 .

In this Step, we prove the following result:

Proposition 2. If ≿ satisfies Completeness for Sure Prospects, Same-Population
Continuity for Sure Outcomes, Same-Population Pareto for Sure Outcomes, Sep-
arability for Sure Prospects, and FixedCritical Level, then there exists continuous
and increasing functions 𝜙𝑖 ∶ ℝ → ℝ (one for each individual 𝑖 ∈ 𝐼) and a num-
ber 𝑐 ∈ ℝ such that for all 𝑢, 𝑣 ∈ 𝑈, 𝑢 ≿ 𝑣 if and only if∑𝑖∈𝑁(𝑢) [𝜙𝑖(𝑢𝑖)−𝜙𝑖(𝑐)] ≥
∑𝑖∈𝑁(𝑣) [𝜙𝑖(𝑣𝑖) − 𝜙𝑖(𝑐)].

For 𝑛 ∈ ℕ with 𝑛 ≥ 3, denote 𝐼𝑛 = {1,… , 𝑛} the set of the 𝑛 first individu-
als and ≿𝑛 the restriction of ≿ to𝑈𝐼𝑛 . The relation ≿𝑛 is a continuous complete
preorder (by Completeness for Sure Prospects and Same-Population Conti-
nuity for Sure Outcomes) that satisfies Separability (for Sure Prospects and
Same-Population) and Pareto for Sure Outcomes, which corresponds to the
Pareto-like property defined in the proof of Theorem 1. So like in the proof
of Theorem 1 (Step 1), we can show that there exist continuous and increasing
functions 𝜙𝑛𝑖 ∶ ℝ → ℝ such that, for all 𝑢, 𝑣 ∈ 𝑈𝐼𝑛 ,

𝑢 ≿𝑛 𝑣⟺ ∑
𝑖∈𝐼𝑛

𝜙𝑛𝑖 (𝑢𝑖) ≥ ∑
𝑖∈𝐼𝑛

𝜙𝑛𝑖 (𝑣𝑖).

Functions 𝜙𝑛𝑖 are unique up to a positive affine transformation (see Debreu,
1960). Without loss of generality, we can normalize the 𝜙𝑛𝑖 functions so that
𝜙𝑛𝑖 (0) = 0 for all 𝑖 ∈ 𝐼𝑛 and 𝜙𝑛1 (1) = 1 to obtain a unique representation.

Now consider any 𝑢, 𝑣 ∈ 𝑈𝐼𝑛 and define ̃𝑢, ̃𝑣 ∈ 𝑈𝐼𝑛+1 by ̃𝑢𝑖 = 𝑢𝑖 and ̃𝑣𝑖 = 𝑣𝑖
for all 𝑖 ∈ 𝐼𝑛 and ̃𝑢𝑛+1 = ̃𝑣𝑛+1 = 𝑐, where 𝑐 is the level in the Fixed Critical
Level axiom. By Fixed Critical Level and transitivity, 𝑢 ≿ 𝑣⟺ ̃𝑢 ≿ ̃𝑣, which
by the result above implies the equivalences:

𝑢 ≿𝑛 𝑣⟺ ∑
𝑖∈𝐼𝑛+1

𝜙𝑛+1𝑖 ( ̃𝑢𝑖) ≥ ∑
𝑖∈𝐼𝑛+1

𝜙𝑛+1𝑖 ( ̃𝑣𝑖)⟺ ∑
𝑖∈𝐼𝑛

𝜙𝑛+1𝑖 (𝑢𝑖) ≥ ∑
𝑖∈𝐼𝑛

𝜙𝑛+1𝑖 (𝑣𝑖).
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Given the unique representation of functions 𝜙𝑛𝑖 under the normalization
𝜙𝑛𝑖 (0) = 0 for all 𝑖 ∈ 𝐼𝑛 and 𝜙𝑛1 (1) = 1, we must have 𝜙𝑛𝑖 = 𝜙𝑛+1𝑖 for all 𝑖 ∈ 𝐼𝑛.
By induction, we obtain that 𝜙𝑚𝑛 = 𝜙𝑛𝑛 for all𝑚 ≥ 𝑛 and 𝑛 ∈ ℕ with 𝑛 ≥ 3.

Define 𝜙1 = 𝜙31 , 𝜙2 = 𝜙32 and 𝜙𝑖 = 𝜙𝑖𝑖 for all 𝑖 ≥ 3. We can conclude that for
any 𝑛 ∈ ℕ, and any 𝑢, 𝑣 ∈ 𝑈𝐼𝑛 :

20

∑
𝑖∈𝐼𝑛

𝜙𝑖(𝑢𝑖) ≥ ∑
𝑖∈𝐼𝑛

𝜙𝑖(𝑣𝑖).

Last consider any 𝑢, 𝑣 ∈ 𝑈. Let 𝑚 = max {max{𝑖 ∈ 𝑁(𝑢)},max{𝑗 ∈ 𝑁(𝑣)}}.
Define ̃𝑢, ̃𝑣 ∈ 𝑈𝐼𝑚 by ̃𝑢𝑖 = 𝑢𝑖 for all 𝑖 ∈ 𝑁(𝑢), ̃𝑣𝑗 = 𝑣𝑗 for all 𝑗 ∈ 𝑁(𝑣), ̃𝑢𝑘 = 𝑐 for
all 𝑘 ∈ (𝐼𝑚 ⧵ 𝑁(𝑢)), and ̃𝑣𝑙 = 𝑐 for all 𝑙 ∈ (𝐼𝑚 ⧵ 𝑁(𝑣)). By Fixed Critical Level
and transitivity, 𝑢 ≿ 𝑣 ⟺ ̃𝑢 ≿ ̃𝑣, which by the representation result above
implies the equivalences:21

𝑢 ≿ 𝑣 ⟺ ∑
𝑖∈𝐼𝑚

𝜙𝑖( ̃𝑢𝑖) ≥ ∑
𝑗∈𝐼𝑚

𝜙𝑗( ̃𝑣𝑗)

⟺ ∑
𝑖∈𝑁(𝑢)
𝜙𝑖(𝑢𝑖) + ∑

𝑘∈(𝐼𝑚⧵𝑁(𝑢))
𝜙𝑘(𝑐) ≥ ∑

𝑗∈𝑁(𝑢)
𝜙𝑗(𝑣𝑗) + ∑

𝑙∈(𝐼𝑚⧵𝑁(𝑢))
𝜙𝑙(𝑐)

⟺ ∑
𝑖∈𝑁(𝑢)
[𝜙𝑖(𝑢𝑖) − 𝜙𝑖(𝑐)] ≥ ∑

𝑖∈𝑁(𝑣)
[𝜙𝑖(𝑣𝑖) − 𝜙𝑖(𝑐)].

Step 4: Conclusion. Assume that ≿ satisfies Completeness for Sure Prospects,
Anonymity for Sure Outcomes, Same-Population Continuity for Sure Out-
comes, Critical Level for Egalitarian Expansion, Social Statewise Dominance,
and Correlated Stochastic Dominance for Sure Individuals. By Step 1, it im-
plies that ≿ satisfies Separability for Sure Prospects. By Step 2, it implies that ≿
satisfies Fixed Critical Level. Like in the proof of Theorem 1, Social Statewise
Dominance and Correlated Stochastic Dominance for Sure Individuals imply
Same-Population Pareto for Sure Outcomes. Therefore, by Step 3, we know
that there exists continuous and increasing functions 𝜙𝑖 ∶ ℝ → ℝ (one for
each individual 𝑖 ∈ 𝐼) and a number 𝑐 ∈ ℝ such that for all 𝑢, 𝑣 ∈ 𝑈, 𝑢 ≿ 𝑣
if and only if∑𝑖∈𝑁(𝑢) [𝜙𝑖(𝑢𝑖) − 𝜙𝑖(𝑐)] ≥ ∑𝑖∈𝑁(𝑣) [𝜙𝑖(𝑣𝑖) − 𝜙𝑖(𝑐)]. By Anonymity
for Sure Outcomes, all the functions 𝜙𝑖 must be identical. y

20 For 𝑛 ≥ 3, this results from the reasoning above. For 𝑛 = 1, given that 𝜙31 is increasing,
it is clear that for all 𝑢, 𝑣 ∈ 𝑈𝐼1 , 𝑢 ≿ 𝑣 ⟺ 𝑢1 ≥ 𝑣1⟺ 𝜙

3
1(𝑢1) ≥ 𝜙31(𝑣1). For 𝑛 = 2, we can

use the argument built on Fixed Critical Level above — adding person 3 at level 𝑐— to show
that, for any 𝑢, 𝑣 ∈ 𝑈𝐼2 , 𝑢 ≿ 𝑣⟺ ∑𝑖∈𝐼2 𝜙

3
𝑖 (𝑢𝑖) ≥ ∑𝑖∈𝐼2 𝜙

3
𝑖 (𝑣𝑖).

21 Between the second and third line, we subtract∑𝑖∈𝐼𝑚 𝜙𝑖(𝑐) from both sides of the inequal-
ity.
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C. Proof of Theorem 2

Proof. It is straightforward to check that Expected Total Utilitarianism satis-
fies all of our six principles.

Let us show that the six principles imply Expected Total Utilitarianism. By
Proposition 1, we know that there exists a continuous and increasing function
𝜙 ∶ ℝ → ℝ and a number 𝑐 ∈ ℝ such that for all 𝑢, 𝑣 ∈ 𝑈, 𝑢 ≿ 𝑣 if and only if
∑𝑖∈𝑁(𝑢) [𝜙(𝑢𝑖) − 𝜙(𝑐)] ≥ ∑𝑖∈𝑁(𝑣) [𝜙(𝑣𝑖) − 𝜙(𝑐)].

Consider any social prospect 𝑓 ∈ 𝐹. Let us construct the social prospect
̃𝑓 ∈ 𝐹 with the following properties:

• There exists a collection of state-indexed populations𝑁1,… ,𝑁𝑚
such that: (i) |𝑁𝑠| = |𝑁(𝑓(𝑠))| for all 𝑠 ∈ 𝑆; (ii)𝑁𝑠

′
∩ 𝑁𝑠 = ∅ for all

𝑠′ ≠ 𝑠;

• 𝑁( ̃𝑓(1)) = ⋃𝑠′∈𝑆𝑁
𝑠′ ;

• There exist bijections 𝜎𝑠 ∶ 𝑁𝑠 → 𝑁(𝑓(𝑠)) such that ̃𝑓𝑖(1) = 𝑓𝜎𝑠(𝑖)(𝑠)
for all 𝑖 ∈ 𝑁𝑠;

• When 𝑠 ∈ {2,… ,𝑚},𝑁( ̃𝑓(𝑠)) = 𝑁𝑚 and ̃𝑓𝑖(𝑠) = 𝑐 for all 𝑖 ∈ 𝑁𝑚.

Social prospect ̃𝑓 is a prospect where all utility levels of all states of the world
have been moved to state 1 (by creating new people), and all individuals have
level 𝑐 or do not exist in other states of the world. We want to show that 𝑓 ∼ ̃𝑓.
Notice that, by the definition of ̃𝑓:

∑
𝑖∈𝑁( ̃𝑓(1))

[𝜙 ( ̃𝑓𝑖(1)) − 𝜙(𝑐)] = ∑
𝑠∈𝑆
∑
𝑗∈𝑁𝑠
[𝜙 ( ̃𝑓𝑗(1)) − 𝜙(𝑐)]

= ∑
𝑠∈𝑆
∑
𝑗∈𝑁𝑠
[𝜙(𝑓𝜎𝑠(𝑗)(𝑠)) − 𝜙(𝑐)]

= ∑
𝑠∈𝑆
∑
𝑘∈𝑁(𝑓(𝑠))

[𝜙 (𝑓𝑘(𝑠)) − 𝜙(𝑐)].

To show that 𝑓 ∼ ̃𝑓, let us construct two sequences of social prospects
( ̂𝑓(1),… , ̂𝑓(𝑚)) and ( ̃𝑓(1),… , ̃𝑓(𝑚)) in the following way.

We have ̂𝑓(1) = ̃𝑓(1), defined as follows:𝑁( ̃𝑓(1)(1)) = ⋃𝑠′∈𝑆𝑁
𝑠′ , ̃𝑓(1)𝑖 (1) =

𝑓𝜎1(𝑖)(1) for all 𝑖 ∈ 𝑁1, and ̃𝑓(1)𝑗 (1) = 𝑐 for all 𝑗 ∈ (𝑁 ( ̃𝑓(1)(1)) ⧵ 𝑁1); for all
𝑠 ≥ 2,𝑁( ̃𝑓(1)(𝑠)) = 𝑁𝑠 and ̃𝑓(1)𝑖 (𝑠) = 𝑓𝜎1(𝑖)(𝑠) for all 𝑖 ∈ 𝑁𝑠.

For any 𝑘 ∈ {2,… ,𝑚}:
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• 𝑁( ̂𝑓(𝑘)(1)) = 𝑁 ( ̃𝑓(𝑘)(1)) = ⋃𝑘𝑠′=1𝑁
𝑠′ ; ̂𝑓(𝑘)𝑖 (1) = ̃𝑓

(𝑘)
𝑖 (1) = 𝑓𝜎𝑠(𝑖)(𝑠)

for all 𝑖 ∈ 𝑁𝑠 and 𝑠 < 𝑘; ̂𝑓(𝑘)𝑗 (1) = 𝑐 and ̃𝑓
(𝑘)
𝑗 (1) = 𝑓𝜎𝑘(𝑗)(𝑘) for all

𝑗 ∈ 𝑁𝑘;

• For all 1 < 𝑠 < 𝑘,𝑁( ̂𝑓(𝑘)(𝑠)) = 𝑁 ( ̃𝑓(𝑘)(𝑠)) = 𝑁𝑘, and
̂𝑓(𝑘)𝑖 (𝑠) = ̃𝑓

(𝑘)
𝑖 (𝑠) = 𝑐 for all 𝑖 ∈ 𝑁𝑘;

• 𝑁( ̂𝑓(𝑘)(𝑘)) = 𝑁 ( ̃𝑓(𝑘)(𝑘)) = 𝑁𝑘, ̂𝑓(𝑘)𝑖 (𝑘) = 𝑓𝜎𝑘(𝑖)(𝑘) and ̃𝑓
(𝑘)
𝑖 (𝑘) = 𝑐

for all 𝑖 ∈ 𝑁𝑘;

• For all 𝑠 > 𝑘,𝑁( ̂𝑓(𝑘)(𝑠)) = 𝑁 ( ̃𝑓(𝑘)(𝑠)) = 𝑁𝑘 ∪ 𝑁𝑠,
̂𝑓(𝑘)𝑖 (𝑠) = ̃𝑓

(𝑘)
𝑖 (𝑠) = 𝑐 for all 𝑖 ∈ 𝑁𝑘, and ̂𝑓(𝑘)𝑗 (𝑠) = ̃𝑓

(𝑘)
𝑗 (𝑠) = 𝑓𝜎𝑠(𝑗)(𝑠) for

all 𝑗 ∈ 𝑁𝑠.

Figure 2: Construction of prospects ̂𝑓(𝑘) and ̃𝑓(𝑘) for 𝑘 ≥ 2. Like in the main
text, 𝛺 denotes non-existence, here applied to a group of persons.

̂𝑓(𝑘)

Populations
state 𝑁1 ⋯ 𝑁𝑘−1 𝑁𝑘 𝑁𝑘+1 𝑁𝑘+2 ⋯

1 (𝑓𝑖(1))𝑖∈𝑁1 ⋯ (𝑓𝑖(𝑘 − 1))𝑖∈𝑁𝑘−1 𝑐 𝛺 𝛺 ⋯
2 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑘 − 1 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
𝑘 𝛺 ⋯ 𝛺 (𝑓𝑖(𝑘))𝑖∈𝑁𝑘 𝛺 𝛺 ⋯
𝑘 + 1 𝛺 ⋯ 𝛺 𝑐 (𝑓𝑖(𝑘 + 1))𝑖∈𝑁𝑘+1 𝛺 ⋯
𝑘 + 2 𝛺 ⋯ 𝛺 𝑐 𝛺 (𝑓𝑖(𝑘 + 2))𝑖∈𝑁𝑘+2 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

̃𝑓(𝑘)

Populations
state 𝑁1 ⋯ 𝑁𝑘−1 𝑁𝑘 𝑁𝑘+1 𝑁𝑘+2 ⋯

1 (𝑓𝑖(1))𝑖∈𝑁1 ⋯ (𝑓𝑖(𝑘 − 1))𝑖∈𝑁𝑘−1 (𝑓𝑖(𝑘))𝑖∈𝑁𝑘 𝛺 𝛺 ⋯
2 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑘 − 1 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
𝑘 𝛺 ⋯ 𝛺 𝑐 𝛺 𝛺 ⋯
𝑘 + 1 𝛺 ⋯ 𝛺 𝑐 (𝑓𝑖(𝑘 + 1))𝑖∈𝑁𝑘+1 𝛺 ⋯
𝑘 + 2 𝛺 ⋯ 𝛺 𝑐 𝛺 (𝑓𝑖(𝑘 + 2))𝑖∈𝑁𝑘+2 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Figure 2 illustrates those social prospects.
By Social Statewise Dominance, ̃𝑓(𝑘) ∼ ̂𝑓(𝑘+1) for any 𝑘 ∈ {1,… ,𝑚 −
1}; indeed, ̃𝑓(𝑘) and ̂𝑓(𝑘+1) differ only in each state of the world (except state
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1 where they are identical) by the existence of people with utility level 𝑐. By
Proposition 1 and CLGU with critical-level 𝑐, they are thus equivalent in each
state of the world. On the other hand, ̃𝑓(𝑘) ∼ ̂𝑓(𝑘) for any 𝑘 ∈ 𝑆 by Correlated
Stochastic Dominance for Sure Individuals. Indeed, the necessary people are
in𝑁𝑘 and their utility is permuted from state 1 to state 𝑘, so that they face the
same prospect.

We thus obtain the chain of equivalences ̃𝑓1 ∼ ̂𝑓(2) ∼ ̃𝑓(2) ∼ ⋯ ∼ ̃𝑓(𝑚−1) ∼
̂𝑓(𝑚) ∼ ̃𝑓. In addition, 𝑓 ∼ ̃𝑓(1) by Social Statewise Dominance (they differ

only in each state of the world by the set of people with certain utility levels,
and/or a number of people at critical-level 𝑐). So, by transitivity 𝑓 ∼ ̃𝑓.

Consider any 𝑓 and 𝑔 ∈ 𝐹. By the arguments above, there exist ̃𝑓 and ̃𝑔
such that (where 𝜙 and 𝑐 are given by Proposition 1):

• 𝑓 ∼ ̃𝑓 and 𝑔 ∼ ̃𝑔;

• ∑𝑖∈𝑁( ̃𝑓(1)) [𝜙 ( ̃𝑓𝑖(1)) − 𝜙(𝑐)] = ∑𝑠∈𝑆 ∑𝑗∈𝑁(𝑓(𝑠)) [𝜙 (𝑓𝑗(𝑠)) − 𝜙(𝑐)];

• ∑𝑖∈𝑁( ̃𝑔(1)) [𝜙 ( ̃𝑔𝑖(1)) − 𝜙(𝑐)] = ∑𝑠∈𝑆 ∑𝑗∈𝑁(𝑔(𝑠)) [𝜙 (𝑔𝑗(𝑠)) − 𝜙(𝑐)]; and

• for all 𝑠 ∈ {2,… ,𝑚}, ̃𝑓𝑖(𝑠) = 𝑐 for all 𝑖 ∈ 𝑁( ̃𝑓(𝑠)) and ̃𝑔𝑗(𝑠) = 𝑐 for all
𝑗 ∈ 𝑁( ̃𝑔(𝑠)).

By Proposition 1, ̃𝑓(𝑠) ∼ ̃𝑔(𝑠) for all 𝑠 ∈ {2,… ,𝑚}, so that, by Social Statewise
Dominance and Completeness for Sure Prospects ̃𝑓 ≿ ̃𝑔 ⟺ ̃𝑓(1) ≿ ̃𝑔(1).
Gathering all the results, we obtain:

𝑓 ≿ 𝑔 ⟺ ̃𝑓 ≿ ̃𝑔
⟺ ̃𝑓(1) ≿ ̃𝑔(1)
⟺ ∑

𝑖∈𝑁( ̃𝑓(1))

[𝜙 ( ̃𝑓𝑖(1)) − 𝜙(𝑐)] ≥ ∑
𝑗∈𝑁( ̃𝑔(1))

[𝜙 ( ̃𝑔𝑗(1)) − 𝜙(𝑐)]

⟺ ∑
𝑠∈𝑆
∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙 (𝑓𝑖(𝑠)) − 𝜙(𝑐)] ≥ ∑

𝑠∈𝑆
∑
𝑗∈𝑁(𝑔(𝑠))
[𝜙 (𝑔𝑗(𝑠)) − 𝜙(𝑐)]

⟺ ∑
𝑠∈𝑆

1
𝑚[ ∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙 (𝑓𝑖(𝑠)) − 𝜙(𝑐)]] ≥ ∑

𝑠∈𝑆

1
𝑚[ ∑
𝑗∈𝑁(𝑔(𝑠))
[𝜙 (𝑔𝑗(𝑠)) − 𝜙(𝑐)]].

y
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Supplementary materials

S.A. Dropping Anonymity

Let us use the framework of Section 4.We try to characterize a social preorder
≿ on 𝐹 = 𝑈𝑆, where 𝑈 = ⋃𝑁∈𝑁 ℝ

𝑁. We will show that our result extends
when we do not assume a symmetric treatment of individuals, i.e. we give up
Anonymity. To do so, we need to replace Anonymity with the Compensation
principle.

Here is the formulation of Compensation in the present context.

Compensation For any 𝑢 ∈ 𝑈, 𝑖 ∈ 𝑁(𝑢) and 𝑣 ∈ ℝ𝑁(𝑢)⧵{𝑖}, there exists
𝑧 ∈ ℝ such that, if 𝑤 ∈ 𝑈 is defined by 𝑣𝑖 = 𝑧 and 𝑣𝑗 = 𝑤𝑗 for all
𝑗 ∈ (𝑁(𝑢) ⧵ {𝑖}), then 𝑢 ∼ 𝑣.

We can prove the following Theorem:

Theorem S.A. The following statements are equivalent:

(1) The social preorder ≿ satisfies Completeness for Sure Prospects,
Same-Population Continuity for Sure Outcomes, Compensation, Critical
Level for Egalitarian Expansion, Social Statewise Dominance and
Correlated Stochastic Dominance for Sure Individuals.

(2) ≿ is a complete social order and there exist continuous, increasing and
unbounded functions 𝜙𝑖 ∶ ℝ → ℝ and a number 𝑐 ∈ ℝ such that for all
𝑓, 𝑔 ∈ 𝐹, 𝑓 ≿ 𝑔 if and only if

∑
𝑠∈𝑆

1
𝑚[ ∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙𝑖(𝑓𝑖(𝑠)) − 𝜙𝑖(𝑐)]] ≥ ∑

𝑠∈𝑆

1
𝑚[ ∑
𝑗∈𝑁(𝑔(𝑠))
[𝜙𝑗(𝑔𝑗(𝑠)) − 𝜙𝑗(𝑐)]].

The fact that Statement 2. implies Statement 1. is straightforward to check.
Below we prove that Statement 2. implies Statement 1. The first step is the
following Proposition:

Proposition S.A. If the social preorder ≿ satisfies Completeness for Sure Pro-
spects, Same-Population Continuity for Sure Outcomes, Social Statewise Domin-
ance and Correlated Stochastic Dominance for Sure Individuals then there exist
continuous, increasing and unbounded functions 𝜙𝑖 ∶ ℝ → ℝ such that for all
𝑢, 𝑣 ∈ 𝑈, 𝑢 ≿ 𝑣 if and only if

∑
𝑖∈𝑁(𝑢)
[𝜙𝑖(𝑢𝑖) − 𝜙𝑖(𝑐)] ≥ ∑

𝑖∈𝑁(𝑣)
[𝜙𝑖(𝑣𝑖) − 𝜙𝑖(𝑐)].
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Proof. Given that ≿ satisfies Completeness for Sure Prospects, Same-
Population Continuity for Sure Outcomes, Compensation, Critical Level for
Egalitarian Expansion, Social Statewise Dominance andCorrelated Stochastic
Dominance for Sure Individuals, we can mimic the beginning of the proof of
Proposition 2 to show that there exists continuous and increasing functions
𝜙𝑖 ∶ ℝ → ℝ (one for each individual 𝑖 ∈ 𝐼) and a number 𝑐 ∈ ℝ such that for
all 𝑢, 𝑣 ∈ 𝑈, 𝑢 ≿ 𝑣 if and only if∑𝑖∈𝑁(𝑢) [𝜙𝑖(𝑢𝑖)−𝜙𝑖(𝑐)] ≥ ∑𝑖∈𝑁(𝑣) [𝜙𝑖(𝑣𝑖)−𝜙𝑖(𝑐)].

It is possible to show that each 𝜙𝑖 function is unbounded using the same
reasoning as in the proof of Theorem 1 (end of Step 1 of the proof). y

Let us now proceed with the proof of Theorem S.A. Consider any𝑓, 𝑔 ∈ 𝐹.
Let𝑀 = (⋃𝑠∈𝑆𝑁(𝑓(𝑠)))∪(⋃𝑠∈𝑆𝑁(𝑔(𝑠))) be the set of individual who exist in
at least one state of the world, in at least one of 𝑓 or 𝑔. Let {𝑖1,… , 𝑖𝑚} a set of
𝑚 distinct individuals (one individual per state of the world) who do not be-
long to𝑀. By Fixed Critical Level (which is implied by Completeness for Sure
Prospects, Social Statewise Dominance, Correlated Stochastic Dominance for
Sure Individuals, and Critical Level for Egalitarian Expansion see Step 2 in
the proof of Proposition 2), there exists 𝑐 ∈ ℝ, such that, for any 𝑢 ∈ 𝑈 and
𝑖 ∉ 𝑁(𝑢), if 𝑣 is defined by 𝑁(𝑣) = 𝑁(𝑢) ∪ {𝑖}, 𝑣𝑗 = 𝑢𝑗 for all 𝑗 ∈ 𝑁(𝑢) and
𝑣𝑖 = 𝑐, then 𝑢 ∼ 𝑣.

Let 𝑓′, 𝑔′ ∈ 𝐹 be defined as follows: for each 𝑠 ∈ 𝑆,𝑁(𝑓′(𝑠)) = 𝑁(𝑓(𝑠)) ∪
{𝑖𝑠},𝑁(𝑔′(𝑠)) = 𝑁(𝑔(𝑠)) ∪ {𝑖𝑠}, 𝑓′𝑖 (𝑠) = 𝑓𝑖(𝑠) for all 𝑖 ∈ 𝑁(𝑓(𝑠)), 𝑔′𝑗 (𝑠) = 𝑔𝑗(𝑠)
for all 𝑗 ∈ 𝑁(𝑔(𝑠)), and 𝑓′𝑖𝑠 (𝑠) = 𝑔

′
𝑖𝑠 (𝑠) = 𝑐. Using Fixed Critical Level, we have

𝑓(𝑠) ∼ 𝑓′(𝑠) and 𝑔(𝑠) ∼ 𝑔′(𝑠) for each 𝑠 ∈ 𝑆.
Next, by Compensation, for each 𝑠 ∈ 𝑆, there exists 𝑧𝑓𝑠 ∈ ℝ such that, if
𝑢 ∈ 𝑈 is defined by𝑁(𝑢) = 𝑁(𝑓′(𝑠)), 𝑢𝑖 = 𝑐 for all 𝑖 ∈ 𝑁(𝑓(𝑠)), and 𝑢𝑖𝑠 = 𝑧

𝑓
𝑠 ,

then 𝑢 ∼ 𝑓′(𝑠). By Proposition S.A, it must then be the case that:

∑
𝑖∈𝑁(𝑓(𝑠))
𝜙𝑖(𝑐) + 𝜙𝑖𝑠 (𝑧

𝑓
𝑠 ) = ∑
𝑖∈𝑁(𝑓(𝑠))
𝜙𝑖(𝑓𝑖(𝑠)) + 𝜙𝑖𝑠 (𝑐)

so that
𝜙𝑖𝑠 (𝑧
𝑓
𝑠 ) − 𝜙𝑖𝑠 (𝑐) = ∑

𝑖∈𝑁(𝑓(𝑠))
[𝜙𝑖(𝑓𝑖(𝑠)) − 𝜙𝑖(𝑐)].

Let 𝑢′ ∈ 𝑈 be defined by𝑁(𝑢′) = {𝑖𝑠}, and 𝑢′𝑖𝑠 = 𝑧
𝑓
𝑠 . By Fixed Critical Level,

𝑢′ ∼ 𝑢, so that by transitivity 𝑢′ ∼ 𝑓(𝑠).
Similarly, for each 𝑠 ∈ 𝑆, we can show that if 𝑣′ ∈ 𝑈 be defined by𝑁(𝑣′) =
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{𝑖𝑠}, and 𝑣′𝑖𝑠 = 𝑧
𝑔
𝑠 , where

𝜙𝑖𝑠 (𝑧
𝑔
𝑠 ) − 𝜙𝑖𝑠 (𝑐) = ∑

𝑖∈𝑁(𝑔(𝑠))
[𝜙𝑖(𝑔𝑖(𝑠)) − 𝜙𝑖(𝑐)],

then 𝑣′ ∼ 𝑔(𝑠).
Let 𝑓′′, 𝑔′′ ∈ 𝐹 be defined as follows: for each 𝑠 ∈ 𝑆, 𝑁(𝑓′′(𝑠)) =
𝑁(𝑔′′(𝑠)) = {𝑖𝑠}, 𝑓′′𝑖𝑠 (𝑠) = 𝑧

𝑓
𝑠 , and 𝑔′′𝑖𝑠 (𝑠) = 𝑧

𝑔
𝑠 . We obtain that for each 𝑠 ∈ 𝑆

𝑓′′(𝑠) ∼ 𝑓(𝑠) and 𝑔′′(𝑠) ∼ 𝑔(𝑠). So, by Social Statewise Dominance, 𝑓′′ ∼ 𝑓
and 𝑔′′ ∼ 𝑔.

Let us construct two sequences of social prospects ( ̂𝑓(2),… , ̂𝑓(𝑚)) and
( ̃𝑓(2),… , ̃𝑓(𝑚)) in the following way. For any 𝑘 ∈ {2,… ,𝑚}:

• 𝑁( ̂𝑓(𝑘)(1)) = 𝑁 ( ̃𝑓(𝑘)(1)) = {𝑖1,… , 𝑖𝑘}; ̂𝑓
(𝑘)
𝑖𝑠 (1) =

̃𝑓(𝑘)𝑖𝑠 (1) = 𝑧
𝑓
𝑠 for all

𝑠 < 𝑘; ̂𝑓(1)𝑖𝑘 (1) = 𝑐;
̃𝑓(1)𝑖𝑘 (1) = 𝑧

𝑓
𝑘 ;

• For all 1 < 𝑠 < 𝑘,𝑁( ̂𝑓(𝑘)(𝑠)) = 𝑁 ( ̃𝑓(𝑘)(𝑠)) = {𝑖𝑘}, and
̂𝑓(𝑘)𝑖𝑘 (𝑠) =

̃𝑓(𝑘)𝑖𝑘 (𝑠) = 𝑐;

• 𝑁( ̂𝑓(𝑘)(𝑘)) = 𝑁 ( ̃𝑓(𝑘)(𝑘)) = {𝑖𝑘}; ̂𝑓
(𝑘)
𝑖𝑘 (1) = 𝑧

𝑓
𝑘 ; ̃𝑓
(𝑘)
𝑖𝑘 (1) = 𝑐;

• For all 𝑠 > 𝑘,𝑁( ̂𝑓(𝑘)(𝑠)) = 𝑁 ( ̃𝑓(𝑘)(𝑠)) = {𝑖𝑠}, and
̂𝑓(𝑘)𝑖𝑠 (𝑠) =

̃𝑓(𝑘)𝑖𝑠 (𝑠) = 𝑧
𝑓
𝑠 .

We have 𝑓′′(𝑠) ∼ ̂𝑓(2)(𝑠) for each 𝑠 ∈ 𝑆 by Fixed Critical Level, given that
𝑓′′ and ̂𝑓(2) only differ by the addition of individual 𝑖2 at critical level 𝑐 in
each state of the world but state 2 (where they are the same). Thus, by Social
Statewise Dominance, 𝑓′′ ∼ ̂𝑓(2).

For any 𝑘 ∈ {2,… ,𝑚}, we have ̂𝑓(𝑘) ∼ ̃𝑓(𝑘) by Correlated Stochastic Dom-
inance for Sure Individuals, because 𝑖𝑘 is the only individual existing for sure,
and faces the same prospect (𝑧𝑓𝑘 in one state of the world, 𝑐 in all other states).

Last, for each 𝑘 ∈ {2,… ,𝑚 − 1}, we have ̃𝑓(𝑘) ∼ ̂𝑓(𝑘+1). Indeed, ̃𝑓(𝑘)(𝑠) ∼
̂𝑓(𝑘+1)(𝑠) in each state 𝑠 ∈ 𝑆 by Fixed-Critical Level: we add 𝑖𝑘+1 at utility level
𝑐 (except in state 𝑘 + 1) and then remove 𝑖𝑘 who was at that level 𝑐. Thus, by
Social Statewise Dominance, ̃𝑓(𝑘) ∼ ̂𝑓(𝑘+1).

In conclusion, by transitivity, 𝑓 ∼ ̃𝑓(𝑚). Similarly, 𝑔 ∼ ̃𝑔(𝑚) where ̃𝑔(𝑚) is
defined as follows:

• 𝑁( ̃𝑔(𝑚)(1)) = {𝑖1,… , 𝑖𝑚}; ̂𝑔
(𝑚)
𝑖𝑠 (1) = 𝑧

𝑔
𝑠 for all 𝑠 ∈ 𝑆;
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• For all 1 < 𝑠,𝑁( ̃𝑔(𝑚)(𝑠)) = {𝑖𝑚}, and ̃𝑔
(𝑚)
𝑖𝑚 (𝑠) = 𝑐.

Thus, 𝑓 ≿ 𝑔 ⟺ ̃𝑓(𝑚) ≿ ̃𝑔(𝑚). But ̃𝑓(𝑚)(𝑠) = ̃𝑔(𝑚)(𝑠) for all 𝑠 > 1. By Social
Statewise Dominance and Proposition S.A, we obtain:

𝑓 ≿ 𝑔 ⟺ ̃𝑓(𝑚) ≿ ̃𝑔(𝑚)

⟺ ̃𝑓(𝑚)(1) ≿ ̃𝑔(𝑚)(1)
⟺ 𝜙𝑖1(

̃𝑓(𝑚)𝑖1 (1)) + ⋯ + 𝜙𝑖𝑚(
̃𝑓(𝑚)𝑖𝑚 (1)) ≥ 𝜙𝑖1( ̃𝑔

(𝑚)
𝑖1 (1)) + ⋯ + 𝜙𝑖𝑚( ̃𝑔

(𝑚)
𝑖𝑚 (1))

⟺ 𝜙𝑖1(𝑧
𝑓
𝑖1) + ⋯ + 𝜙𝑖𝑚(𝑧

𝑓
𝑖𝑚) ≥ 𝜙𝑖1(𝑧

𝑔
𝑖1) + ⋯ + 𝜙𝑖𝑚(𝑧

𝑔
𝑖𝑚).

But by definition, we have mentioned above that for all 𝑠 ∈ 𝑆:

𝜙𝑖𝑠 (𝑧
𝑓
𝑠 ) − 𝜙𝑖𝑠 (𝑐) = ∑

𝑖∈𝑁(𝑓(𝑠))
[𝜙𝑖(𝑓𝑖(𝑠)) − 𝜙𝑖(𝑐)],

and
𝜙𝑖𝑠 (𝑧
𝑔
𝑠 ) − 𝜙𝑖𝑠 (𝑐) = ∑

𝑗∈𝑁(𝑔(𝑠))
[𝜙𝑗(𝑔𝑗(𝑠)) − 𝜙𝑗(𝑐)].

Therefore:

𝑓 ≿ 𝑔

⟺ ∑
𝑠∈𝑆
[𝜙𝑖𝑠 (𝑐𝑖𝑠 ) + ∑

𝑖∈𝑁(𝑓(𝑠))
[𝜙𝑖 (𝑓𝑖(𝑠)) − 𝜙𝑖(𝑐)]] ≥ ∑

𝑠∈𝑆
[𝜙𝑖𝑠 (𝑐𝑖𝑠 ) + ∑

𝑗∈𝑁(𝑔(𝑠))
[𝜙𝑗 (𝑔𝑗(𝑠)) − 𝜙𝑗(𝑐)]]

⟺ ∑
𝑠∈𝑆

1
𝑚[ ∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙𝑖 (𝑓𝑖(𝑠)) − 𝜙𝑖(𝑐)]] ≥ ∑

𝑠∈𝑆

1
𝑚[ ∑
𝑗∈𝑁(𝑔(𝑠))
[𝜙𝑗 (𝑔𝑗(𝑠)) − 𝜙𝑗(𝑐)]].

S.B. Extension to an infinite state space

Assume that there exists an infinite set of states of the world 𝑆, with typical
element 𝑠 ∈ 𝑆. We denote with 𝛴 a 𝜎-algebra over 𝑆, and by 𝑃 a probability
measure on the measurable space (𝑆, 𝛴). We assume 𝑃 to be given, i.e. that we
are in a framework with ‘objective’ probability.

We make the following assumption on the measured space (𝑆, 𝛴, 𝑃):

For any event 𝐸 ∈ 𝛴, 𝑃(𝐸) is a rational number. Furthermore,
for any 𝑚 ∈ ℕ, there exists a partition of 𝑆 into 𝑚 𝛴-measurable
events, (𝐸1,… , 𝐸𝑚) such that 𝑃(𝐸𝑘) = 1/𝑚 for all 𝑘 ∈ {1,… ,𝑚}.
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Our assumption implies that for each number 𝑘 we can find a partition of the
state space into 𝑘 equiprobable events. This is important because our proof in
the main text applies to such cases.

We define social prospects as functions from 𝑆 to 𝑈, which are assumed
to be 𝛴-measurable. We actually focus only on simple prospects, that is social
prospects such that there exists a finite partition (𝐸1(𝑓),⋯ , 𝐸𝑚(𝑓)) of 𝑆 such
that 𝑓(𝑠) = 𝑓(𝑠′) for all 𝑠, 𝑠′ ∈ 𝐸𝑘(𝑓), all 𝑘 = 1,⋯ ,𝑚, and each 𝐸𝑘(𝑓) is
measurable. We let 𝐹 be the set of all those simple and measurable prospects.

The properties of Completeness for Sure Prospects, Anonymity, Same pop-
ulation continuity, and Critical Level for Egalitarian Expansion all hold for
sure prospects, so they do not need be to be adapted to the present frame-
work. Social Statewise Dominance can still be formulated as before, because
it is a state-by-state property, and so does not depend on the number of states
of the world. The only axioms that we need to adjust to the new framework
are the stochastic dominance properties.

In the case of a fixed population, the formulation of Individual Stochastic
Dominance must be adapted as follows:

Individual Stochastic Dominance For all 𝑓, 𝑔 ∈ 𝐹, if for each
individual 𝑖 ∈ 𝐼 there exist ℓ𝑖 ∈ ℕ and two partitions in 𝛴-measurable
events {𝐸1,… , 𝐸ℓ𝑖 } and {𝐸̃1,… , 𝐸̃ℓ𝑖 } such that for all 𝑟 ∈ {1,… , ℓ𝑖},
𝑃(𝐸𝑟) = 𝑃(𝐸̃𝑟) and 𝑓𝑖(𝑠) ≥ 𝑔𝑖(𝑠′) for all 𝑠 ∈ 𝐸𝑟 and 𝑠′ ∈ 𝐸̃𝑟; then 𝑓 ≿ 𝑔.
If in addition there exists ℎ ∈ 𝐼 and 𝑟′ ∈ {1,… , ℓℎ} such that
𝑓ℎ(𝑠) > 𝑔ℎ(𝑠′) for all 𝑠 ∈ 𝐸𝑟′ and 𝑠′ ∈ 𝐸̃𝑟′ then 𝑓 ≻ 𝑔.

The definition is adapted to guarantee dominance on events with the same
probability.

In the case of a variable population, the formulation of Correlated Stochas-
tic Dominance for Sure Individuals must be adapted as follows:

Correlated Stochastic Dominance for Sure Individuals For all 𝑓, 𝑔 ∈ 𝐹,
if:

(i) 𝑆𝑖(𝑓) = 𝑆𝑖(𝑔) for all 𝑖 ∈ 𝐼;
(ii) for all 𝑗 ∈ 𝐼 such that 𝑆𝑗(𝑓) ∉ {∅, 𝑆}, there exists 𝑥𝑗 ∈ ℝ such that
𝑓𝑗(𝑠) = 𝑔𝑗(𝑠) = 𝑥𝑗 for all 𝑠 ∈ 𝑆𝑗(𝑓);

(iii) there exists ℓ ∈ ℕ and two partitions in 𝛴-measurable events
{𝐸1,… , 𝐸ℓ} and {𝐸̃1,… , 𝐸̃ℓ} such that, for all 𝑘 ∈ 𝐼 such that
𝑆𝑘(𝑓) = 𝑆 and for all 𝑟 ∈ {1,… , ℓ}, 𝑃(𝐸𝑟) = 𝑃(𝐸̃𝑟), 𝑓𝑘(𝑠) ≥ 𝑔𝑘(𝑠′)
for all 𝑠 ∈ 𝐸𝑟 and 𝑠′ ∈ 𝐸̃𝑟; then 𝑓 ≿ 𝑔.

36



If in addition there exists ℎ ∈ 𝐼 such that 𝑆ℎ(𝑓) = 𝑆 and 𝑟′ ∈ {1,… , ℓ}
such that 𝑓ℎ(𝑠) > 𝑔ℎ(𝑠′) for all 𝑠 ∈ 𝐸𝑟′ and 𝑠′ ∈ 𝐸̃𝑟′ then 𝑓 ≻ 𝑔.

Consider any𝑚 ∈ ℕ and let (𝐸1,… , 𝐸𝑚) be the partition into𝑚 equiprobable
andmeasurable eventsmentioned in our assumption above.Denote𝐹𝑚 the set
of all prospects 𝑓 such that for each 𝑘 ∈ {1,… ,𝑚}we have 𝑓(𝑠) = 𝑓(𝑠′) for all
𝑠, 𝑠′ ∈ 𝐸𝑘. Restricting our axioms to the set 𝐹𝑚, we clearly are formally in the
same case as the one in the main text because each event is like an equiproba-
ble state of theworldwherewell-defined consequence occurs. So, we can apply
all our results and deduce – for instance – that, if the social preorder ≿ satis-
fies Completeness for Sure Prospects, Anonymity for Sure Outcomes, Same-
Population Continuity for Sure Outcomes, Critical Level for Egalitarian Ex-
pansion, Social Statewise Dominance and Correlated Stochastic Dominance
for Sure Individuals, then there exists a continuous and increasing function
𝜙 ∶ ℝ → ℝ and a number 𝑐 ∈ ℝ such that for all 𝑓, 𝑔 ∈ 𝐹𝑚, 𝑓 ≿ 𝑔 if and only
if22

∑
𝑠∈{1,…,𝑚}

1
𝑚[ ∑
𝑖∈𝑁(𝑓(𝐸𝑠))

[𝜙(𝑓𝑖(𝐸𝑠))−𝜙(𝑐)]] ≥ ∑
𝑠∈{1,…,𝑚}

1
𝑚[ ∑
𝑖∈𝑁(𝑔(𝐸𝑠))

[𝜙(𝑔𝑖(𝐸𝑠))−𝜙(𝑐)]],

where, with an abuse of notation, 𝑓(𝐸𝑠) = 𝑓(𝑡) where 𝑡 is some 𝑡 ∈ 𝐸𝑠 (which
is well defined because 𝑓(𝑡′) = 𝑓(𝑡) for all 𝑡 ∈ 𝐸𝑠); 𝑓𝑖(𝐸𝑠) = 𝑓𝑖(𝑡) where 𝑡 is
some 𝑡 ∈ 𝐸𝑠; and similar notation are used for 𝑔.

Consider any two prospects 𝑓 and 𝑔 ∈ 𝐹. Let (𝐸1(𝑓),… , 𝐸𝑚(𝑓)) and
(𝐸1(𝑔),… , 𝐸𝑟(𝑔)) be the partitions generated by 𝑓 and 𝑔. Given that prob-
abilities of events are assumed to be rational numbers, there exists a least com-
mon denominator 𝑑 such that for all 𝑙 = 1,… ,𝑚 there exists 𝑘𝑙𝑓 ∈ ℕ such

that 𝑃(𝐸𝑙(𝑓)) = 𝑘
𝑙
𝑓
𝑑 and for all 𝑙′ = 1,… , 𝑟 there exists 𝑘𝑙

′

𝑔 ∈ ℕ such that

𝑃(𝐸𝑙
′
(𝑔)) = 𝑘

𝑙′
𝑔
𝑑 . By definition,∑𝑚𝑙=1 𝑘

𝑙
𝑓 = ∑

𝑟
𝑙′=1 𝑘
𝑙′
𝑔 = 𝑑. Recall that (𝐸1,… , 𝐸𝑑)

is a partition of the state space into 𝑚 measurable and equiprobable events.
Denote 𝐾𝑝𝑓 = ∑

𝑝
𝑙=1 𝑘
𝑙
𝑓 and 𝐾

𝑝′
𝑔 = ∑𝑝

′

𝑙′=1 𝑘
𝑙′
𝑓 .Let us define ̃𝑓, ̃𝑔 ∈ 𝐹𝑑 as follows:

• for each 𝑝 ∈ {1,… ,𝑚}, 𝐸̃𝑝(𝑓) = ⋃
𝐾𝑝𝑓
𝑗=1+𝐾𝑝−1𝑓
𝐸𝑙, and ̃𝑓(𝑠) = 𝑓(𝐸𝑝(𝑓)) for

any 𝑠 ∈ 𝐸̃𝑝(𝑓).

22 Formally, the function 𝜙 may depend on 𝑚, but we can link different representations
for various values of𝑚 using Stochastic Dominance as explained below. Using the unicity of
additive representations up to an increasing affine transformation, we can actually show that
𝜙 is independent of𝑚.
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• for each 𝑝′ ∈ {1,… , 𝑟}, 𝐸̃𝑝
′
(𝑔) = ⋃𝐾

𝑝′
𝑔

𝑗=1+𝐾𝑝
′−1
𝑔
𝐸𝑙, and ̃𝑔(𝑠) = 𝑔(𝐸𝑝

′
(𝑔))

for any 𝑠 ∈ 𝐸̃𝑝
′
(𝑔).

So, what we do is to associate to each event 𝐸𝑝(𝑓) defined by 𝑓 a collection
𝐸̃𝑝(𝑓) of 𝑘𝑝𝑓 of equiprobable events and assume that the outcome in each state
in this collection is the same as the common consequence obtained in pro-
spect 𝑓 on 𝐸𝑝(𝑓). By definition, 𝑃(𝐸̃𝑝(𝑓)) = 𝑃(𝐸𝑝(𝑓)) = 𝑘𝑝𝑓/𝑑. Similarly,

we associate to each event 𝐸𝑝
′
(𝑔) defined by 𝑓 a collection 𝐸̃𝑝

′
(𝑔) of 𝑘𝑝

′

𝑔 of
equiprobable events and assume that the outcome in each state in this collec-
tion is the same as the common consequence obtained in prospect𝑔 on𝐸𝑝

′
(𝑔).

What we will show next, using Stochastic Dominance, is that𝑓 ∼ ̃𝑓 and 𝑔 ∼ ̃𝑔.
Then we can conclude (because ̃𝑓, ̃𝑔 ∈ 𝐹𝑑):

𝑓 ≿ 𝑔
⟺ ̃𝑓 ≿ ̃𝑔

⟺ ∑
𝑠∈{1,…,𝑑}

1
𝑑[ ∑
𝑖∈𝑁( ̃𝑓(𝐸𝑠))

[𝜙( ̃𝑓𝑖(𝐸𝑠)) − 𝜙(𝑐)]] ≥ ∑
𝑠∈{1,…,𝑑}

1
𝑚[ ∑
𝑖∈𝑁( ̃𝑔(𝐸𝑠))

[𝜙( ̃𝑔𝑖(𝐸𝑠)) − 𝜙(𝑐)]]

⟺
𝑚

∑
𝑝=1
∑

𝑠∶𝐸𝑠⊂𝐸̃𝑝(𝑓)

1
𝑑[ ∑
𝑖∈𝑁( ̃𝑓(𝐸𝑠))

[𝜙( ̃𝑓𝑖(𝐸𝑠)) − 𝜙(𝑐)]] ≥
𝑟

∑
𝑝′=1
∑

𝑠∶𝐸𝑠⊂𝐸̃𝑝′ (𝑔)

1
𝑑[ ∑
𝑖∈𝑁( ̃𝑔(𝐸𝑠))

[𝜙( ̃𝑔𝑖(𝐸𝑠)) − 𝜙(𝑐)]]

⟺
𝑚

∑
𝑝=1

𝑘𝑝𝑓
𝑑 [ ∑
𝑖∈𝑁(𝑓(𝐸𝑝(𝑓)))

[𝜙(𝑓𝑖(𝐸𝑝(𝑓))) − 𝜙(𝑐)]] ≥
𝑟

∑
𝑝′=1

𝑘𝑝
′
𝑔

𝑑 [ ∑
𝑖∈𝑁(𝑔(𝐸𝑝′ (𝑔)))

[𝜙(𝑔𝑖(𝐸𝑝
′
(𝑔))) − 𝜙(𝑐)]]

⟺ ∫
𝑠∈𝑆
[ ∑
𝑖∈𝑁(𝑓(𝑠))
[𝜙𝑖 (𝑓𝑖(𝑠)) − 𝜙𝑖(𝑐𝑖)]]𝑑𝑃(𝑠) ≥ ∫

𝑠∈𝑆
[ ∑
𝑗∈𝑁(𝑔(𝑠))
[𝜙𝑗 (𝑔𝑗(𝑠)) − 𝜙𝑗(𝑐𝑗)]]𝑑𝑃(𝑠).

It only remains to show that 𝑓 ∼ ̃𝑓 and 𝑔 ∼ ̃𝑔. We only prove that 𝑓 ∼ ̃𝑓
in the variable population case (the proof that 𝑔 ∼ ̃𝑔, and the one for the same
population case are similar). First remark that Proposition 1 still applies (it
suffices to concentrate on prospects in 𝐹2 to get existence independence and
the rest of the proof follows). To show that 𝑓 ∼ ̃𝑓, let us denote 𝑁̄ = {𝑖 ∈
𝑆|𝑆𝑖(𝑓) ≠ ∅} the set of individuals who exist in at least one state of the world,
and introduce 𝑓′ and 𝑓′′ as follows:

• for all 𝑠 ∈ 𝑆,𝑁(𝑓′) = 𝑁̄, 𝑓′𝑖 (𝑠) = 𝑓𝑖(𝑠) for all 𝑖 ∈ 𝑁(𝑓(𝑠)) and 𝑓′𝑗 (𝑠) = 𝑐
for all 𝑗 ∈ (𝑁̄ ⧵ 𝑁(𝑓(𝑠));

• for all 𝑠 ∈ 𝑆,𝑁(𝑓′′) = 𝑁̄, 𝑓′′𝑖 (𝑠) = ̃𝑓𝑖(𝑠) for all 𝑖 ∈ 𝑁( ̃𝑓(𝑠)) and
𝑓′′𝑗 (𝑠) = 𝑐 for all 𝑗 ∈ (𝑁̄ ⧵ 𝑁( ̃𝑓(𝑠));
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where 𝑐 is the critical level in Proposition 1.
By Proposition 1, 𝑓(𝑠) ∼ 𝑓′(𝑠) and ̃𝑓(𝑠) ∼ 𝑓′′(𝑠) for all 𝑠 ∈ 𝑆. By Social

Statewise Dominance, we obtain 𝑓 ∼ 𝑓′ and ̃𝑓 ∼ 𝑓′′. Now, remark that the
same population 𝑁̄ exist in all states of the world in both 𝑓′ and 𝑓′′. Last, by
definition, for any 𝑝 ∈ {1,… ,𝑚}, 𝑓′(𝑠) = 𝑓′′(𝑠′) for all 𝑠 ∈ 𝐸𝑝(𝑓) and 𝑠 ∈
𝐸𝑝( ̃𝑓). Therefore, by Correlated Stochastic Dominance for Sure Individuals,
𝑓′ ∼ 𝑓′′.

As final remark, let us discuss how to deal with cases where probability
are not rational numbers. Indeed, our assumption up to know was that the
probability of each event defined by an act was rational. To include the more
general case, we can introduce a more general property of probability conti-
nuity for prospects, which is as follows:

Probability Continuity for Prospects For all 𝑓, 𝑔 ∈ 𝐹, if there exists a
sequence of prospects (𝑓𝑛)𝑛∈ℕ such that lim𝑛→ℕ 𝑃(𝑠 ∈ 𝑆|𝑓𝑛(𝑠) ≠ 𝑓) = 0
and 𝑓𝑛 ≿ 𝑔 for all 𝑛 ∈ ℕ, then 𝑓 ≿ 𝑔.

The case of prospects that are not simple (that do not define a finite partition
of the state space) would be more difficult to deal with.
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